Угол между плоскостями. Перпендикулярность плоскостей. Как найти угол между двумя плоскостями

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Использование метода координат при вычислении угла

между плоскостями

Наиболее общий метод нахождения угла между плоскостями - метод координат (иногда - с привлечением векторов). Его можно использовать тогда, когда испробованы все остальные. Но бывают ситуации, в которых метод координат имеет смысл применять сразу же, а именно тогда, когда система координат естественно связана с многогранником, указанным в условии задачи, т.е. явно просматриваются три попарно перпендикулярные прямые, на которых можно задать оси координат. Такими многогранниками являются прямоугольный параллелепипед и правильная четырехугольная пирамида. В первом случае система координат может быть задана выходящими из одной вершины ребрами (рис.1), во втором - высотой и диагоналями основания (рис. 2)

Применение метода координат состоит в следующем.

Вводится прямоугольная система координат в пространстве. Желательно ввести ее «естественным» образом - «привязать» к тройке попарно перпендикулярных прямых, имеющих общую точку.

Для каждой из плоскостей, угол между которыми ищется, составляется уравнение. Проще всего составить такое уравнение, зная координаты трех точек плоскости, не лежащих на одной прямой.

Уравнение плоскости в общем виде имеет вид Ах + By + Cz + D = 0.

Коэффициенты А, В, С в этом уравнении являются координатами нормального вектора плоскости (вектора, перпендикулярного плоскости). Определяем затем длины и скалярное произведение нормальных векторов к плоскостям, угол между которыми ищется. Если координаты этих векторов (А 1 , В 1 ; С 1 ) и (А 2 ; В 2 ; С 2 ), то искомый угол вычисляется по формуле

Замечание. Необходимо помнить, что угол между векторами (в отличие от угла между плоскостями) может быть тупым, и чтобы избежать возможной неопределенности, в числителе правой части формулы стоит модуль.

Решите методом координат такую задачу.

Задача 1. Дан куб ABCDA 1 B 1 C 1 D 1 . Точка К - середина ребра AD, точка L - середина ребра CD. Чему равен угол между плоскостями А 1 KL и A 1 AD?

Решение . Пусть начало системы координат находится в точке А, а оси координат идут вдоль лучей AD, АВ, АА 1 (рис. 3). Ребро куба примем равным 2 (удобно делить пополам). Тогда координаты точек A 1 , К, L таковы: А 1 (0; 0; 2), К(1; 0; 0), L(2; 1; 0).

Рис. 3

Запишем уравнение плоскости А 1 К L в общем виде. Затем подставим в него координаты выбранных точек этой плоскости. Получим систему трех уравнений с четырьмя неизвестными:

Выразим коэффициенты А, В, С через D и придем к уравнению

Разделив обе его части на D (почему D = 0?) и домножив затем на -2, получим уравнение плоскости A 1 KL: 2х - 2 у + z - 2 = 0. Тогда нормальный вектор к этой плоскости имеет координаты (2: -2; 1) . Уравнение плоскости A 1 AD таково: y=0, а координаты нормального вектора к ней, например, (0; 2: 0) . Согласно приведенной выше формуле для косинуса угла между плоскостями получаем:

Величину угла между двумя различными плоскостями можно определить для любого взаимного расположения плоскостей.

Тривиальный случай если плоскости параллельны. Тогда угол между ними считается равным нулю.

Нетривиальный случай если плоскости пересекаются. Этому случаю и посвящено дальнейшее обсуждение. Сначала нам понадобится понятие двугранного угла.

9.1 Двугранный угол

Двугранный угол это две полуплоскости с общей прямой (которая называется ребром двугранного угла). На рис. 50 изображён двугранный угол, образованный полуплоскостями и; ребром этого двугранного угла служит прямая a, общая для данных полуплоскостей.

Рис. 50. Двугранный угол

Двугранный угол можно измерять в градусах или радианах словом, ввести угловую величину двугранного угла. Делается это следующим образом.

На ребре двугранного угла, образованного полуплоскостями и, возьмём произвольную точку M. Проведём лучи MA и MB, лежащие соответственно в данных полуплоскостях и перпендикулярные ребру (рис. 51 ).

Рис. 51. Линейный угол двугранного угла

Полученный угол AMB это линейный угол двугранного угла. Угол " = \AMB как раз и является угловой величиной нашего двугранного угла.

Определение. Угловая величина двугранного угла это величина линейного угла данного двугранного угла.

Все линейные углы двугранного угла равны друг другу (ведь они получаются друг из друга параллельным сдвигом). Поэтому данное определение корректно: величина " не зависит от конкретного выбора точки M на ребре двугранного угла.

9.2 Определение угла между плоскостями

При пересечении двух плоскостей получаются четыре двугранных угла. Если все они имеют одинаковую величину (по 90), то плоскости называются перпендикулярными; угол между плоскостями тогда равен 90 .

Если не все двугранные углы одинаковы (то есть имеются два острых и два тупых), то углом между плоскостями называется величина острого двугранного угла (рис. 52 ).

Рис. 52. Угол между плоскостями

9.3 Примеры решения задач

Разберём три задачи. Первая простая, вторая и третья примерно на уровне C2 на ЕГЭ по математике.

Задача 1. Найдите угол между двумя гранями правильного тетраэдра.

Решение. Пусть ABCD правильный тетраэдр. Проведём медианы AM и DM соответствующих граней, а также высоту тетраэдра DH (рис. 53 ).

Рис. 53. К задаче 1

Будучи медианами, AM и DM являются также высотами равносторонних треугольников ABC и DBC. Поэтому угол " = \AMD есть линейный угол двугранного угла, образованного гранями ABC и DBC. Находим его из треугольника DHM:

1 AM

Ответ: arccos 1 3 .

Задача 2. В правильной четырёхугольной пирамиде SABCD (с вершиной S) боковое ребро равно стороне основания. Точка K середина ребра SA. Найдите угол между плоскостями

Решение. Прямая BC параллельна AD и тем самым параллельна плоскости ADS. Поэтому плоскость KBC пересекает плоскость ADS по прямой KL, параллельной BC (рис. 54 ).

Рис. 54. К задаче 2

При этом KL будет также параллельна прямой AD; следовательно, KL средняя линия треугольника ADS, и точка L середина DS.

Проведём высоту пирамиды SO. Пусть N середина DO. Тогда LN средняя линия треугольника DOS, и потому LN k SO. Значит, LN перпендикуляр к плоскости ABC.

Из точки N опустим перпендикуляр NM на прямую BC. Прямая NM будет проекцией наклонной LM на плоскость ABC. Из теоремы о трёх перпендикулярах следует тогда, что LM также перпендикулярна BC.

Таким образом, угол " = \LMN является линейным углом двугранного угла, образованного полуплоскостями KBC и ABC. Будем искать этот угол из прямоугольного треугольника LMN.

Пусть ребро пирамиды равно a. Сначала находим высоту пирамиды:

SO = p

Решение. Пусть L точка пересечения прямых A1 K и AB. Тогда плоскость A1 KC пересекает плоскость ABC по прямой CL (рис.55 ).

A C

Рис. 55. К задаче 3

Треугольники A1 B1 K и KBL равны по катету и острому углу. Следовательно, равны и другие катеты: A1 B1 = BL.

Рассмотрим треугольник ACL. В нём BA = BC = BL. Угол CBL равен 120 ; стало быть, \BCL = 30 . Кроме того, \BCA = 60 . Поэтому \ACL = \BCA + \BCL = 90 .

Итак, LC ? AC. Но прямая AC служит проекцией прямой A1 C на плоскость ABC. По теореме о трёх перпендикулярах заключаем тогда, что LC ? A1 C.

Таким образом, угол A1 CA линейный угол двугранного угла, образованного полуплоскостями A1 KC и ABC. Это и есть искомый угол. Из равнобедренного прямоугольного треугольника A1 AC мы видим, что он равен 45 .

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Рассмотрим две плоскости р 1 и р 2 с нормальными векторами n 1 и n 2 . Угол φ между плоскостями р 1 и р 2 выражается через угол ψ = \(\widehat{(n_1; n_2)}\) следующим образом: если ψ < 90°, то φ = ψ (рис. 202, а); если ψ > 90°, то ψ = 180° - ψ (рис. 202,6).

Очевидно, что в любом случае справедливо равенство

cos φ = |cos ψ|

Так как косинус угла между ненулевыми векторами равен скалярному произведению этих векторов, деленному на произведение их длин, имеем

$$ cos\psi=cos\widehat{(n_1; n_2)}=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} $$

и, следовательно, косинус угла φ между плоскостями р 1 и р 2 может быть вычислен по формуле

$$ cos\phi=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} (1)$$

Если плоскости заданы общими уравнениями

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0,

то за их нормальные векторы можно взять векторы n 1 = (A 1 ; B 1 ; С 1) и n 2 = (A 2 ; B 2 ; С 2).

Записав правую часть формулы (1) через координаты, получим

$$ cos\phi=\frac{|A_1 A_2 + B_1 B-2 + C_1 C_2|}{\sqrt{{A_1}^2+{B_1}^2+{C_1}^2}\sqrt{{A_2}^2+{B_2}^2+{C_2}^2}} $$

Задача 1. Вычислить угол между плоскостями

х - √2 y + z - 2 = 0 и х+ √2 y - z + 13 = 0.

В данном случае A 1 .=1, B 1 = - √2 , С 1 = 1, A 2 =1, B 2 = √2 , С 2 = - 1.

По формуле (2) получаем

$$ cos\phi=\frac{|1\cdot 1 - \sqrt2 \cdot \sqrt2 - 1 \cdot 1|}{\sqrt{1^2+(-\sqrt2)^2+1^2}\sqrt{1^2+(\sqrt2)^2+(-1)^2}}=\frac{1}{2} $$

Следовательно, угол между данными плоскостями равен 60°.

Плоскости с нормальными векторами n 1 и n 2:

а) параллельны тогда и только тогда, когда векторы n 1 и n 2 коллинеарны;

б) перпендикулярны, тогда и только тогда, когда векторы n 1 и n 2 перпендикулярны, т. е. когда n 1 n 2 = 0.

Отсюда получаем.необходимые и достаточные условия параллельности и перпендикулярности двух плоскостей, заданных общими уравнениями.

Для того чтобы плоскости

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

были параллельны, необходимо и достаточно, чтобы выполнялись равенства

$$ \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} \;\; (3)$$

В случае, если какой-либо из коэффициентов A 2 , B 2 , С 2 равен нулю, подразумевается, что равен нулю и соответствующий коэффициент A 1 , B 1 , С 1

Невыполнение хотя бы одного из этих двух равенств означает, что плоскости не параллельны, т. е. пересекаются.

Для перпендикулярности плоскостей

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

необходимо и достаточно, чтобы выполнялось равенство

А 1 А 2 + B 1 B 2 + C 1 C 2 = 0. (4)

Задача 2. Среди следующих пар плоскостей:

2х + 5у + 7z - 1 = 0 и 3х - 4у + 2z = 0,

у - 3z + 1 = 0 и 2у - 6z + 5 = 0,

4х + 2у - 4z + 1 = 0 и 2х + у + 2z + 3 = 0

указать параллельные или перпендикулярные. Для первой пары плоскостей

А 1 А 2 + B 1 B 2 + C 1 C 2 = 2 3 + 5 (- 4) + 7 2 = 0,

т. е. выполняется условие перпендикулярности. Плоскости перпендикулярны.

Для второй пары плоскостей

\(\frac{B_1}{B_2}=\frac{C_1}{C_2}\), так как \(\frac{1}{2}=\frac{-3}{-6} \)

а коэффициенты А 1 и А 2 равны нулю. Следовательно, плоскости второй пары параллельны. Для третьей пары

\(\frac{B_1}{B_2}\neq\frac{C_1}{C_2}\), так как \(\frac{2}{1}\neq\frac{-4}{2} \)

и А 1 А 2 + B 1 B 2 + C 1 C 2 = 4 2 + 2 1 - 4 2 =/= 0, т. е. плоскости третьей пары не параллельны и не перпендикулярны.