Современные исследования космического пространства. Фундаментальные космические исследования. Гигантские космические магнитные пузыри

Недавно рассказал следующее:

«Я могу стоять перед восьмиклассниками и говорить: кто хочет стать аэрокосмическим инженером, который построит самолет на 20% более энергоэффективный, чем тот, на котором летали ваши родители? Но это не работает. Однако если я спрошу: кто хочет быть аэрокосмический инженером, который спроектирует самолет, который будет ориентироваться в разреженной атмосфере Марса? Я получу лучших учеников в классе».

Это важно для государственной безопасности

Ведущие мировые страны должны обнаруживать и предотвращать враждебные намерения или террористические группы, которые могут развернуть оружие в космосе или атаковать навигационные, коммуникационные спутники и спутники наблюдения. И хотя США, Россия и Китай в 1967 году заключили договор о неприкосновенности территории в космосе, на нее могут позариться другие страны. И не факт, что договоры прошлого можно пересмотреть.

Даже если эти ведущие страны в большей части освоят ближайший космос, им нужно будет быть уверенными в том, что компании могут добывать полезные ископаемые на Луне или астероидах, не переживая, что их будут терроризировать или узурпировать. Очень важно настроить дипломатические каналы в космосе, с возможным военным использованием.

Нам нужно космическое сырье


В космосе есть золото, серебро, платина и другие ценные вещества. Много внимания привлекли мероприятия частных компаний, которые предусматривают добычу полезных ископаемых на астероидах, но космическим шахтерам не придется далеко ходить, чтобы найти богатые ресурсы.

Луна, к примеру, является потенциально прибыльным источником гелия-3 (используется для МРТ и в качестве потенциального топлива для атомных электростанций). На Земле гелий-3 настолько редкий, что его цена достигает 5000 долларов за литр. Также Луна может быть потенциально богатой редкоземельными элементами вроде европия и тантала, которые пользуются большим спросом для использования в электронике, солнечных панелях и других продвинутых устройствах.

Государства могут мирно работать вместе


Ранее мы уже упомянули о зловещей угрозе международного конфликта в космосе. Но все может быть и мирно, если вспомнить о сотрудничестве разных стран на Международной космической станции. Космическая программа США, например, позволяет другим странам, большим и не очень, объединять свои усилия в исследовании космоса.

Международное сотрудничество на поле космоса будет исключительно взаимовыгодным. С одной стороны, большие расходы были бы распределены на всех. С другой - это помогло бы установить тесные дипломатические отношения между странами и создать новые рабочие места для обеих сторон.

Оно помогло бы ответить на большой вопрос


Почти половина людей на Земле считает, что где-то в космосе есть жизнь. Четверть из них думает, что инопланетяне уже посещали нашу планету.

Однако все попытки найти в небе признаки других существ оказывались бесплодными. Возможно, потому что земная атмосфера мешает сообщениям доходить до нас. Вот почему те, кто занимается поиском внеземных цивилизаций, готовы разворачивать еще больше орбитальных обсерваторий вроде . Этот спутник будет запущен в 2018 году и сможет искать химические признаки жизни в атмосферах далеких планет за пределами нашей Солнечной системы. Это только начало. Возможно, дополнительные космические усилия помогут нам, наконец, ответить на вопрос, одиноки ли мы.

Людям нужно утолять жажду исследований


Наши первобытные предки распространились из Восточной Африки по всей планете, и с тех пор мы не останавливаем движением. Мы ищем свежие территории за пределами Земли, поэтому единственный способ утолить это первобытное желание - отправиться в межзвездное путешествие на несколько поколений.

В 2007 году бывший администратор NASA Майкл Гриффин (на фото выше) провел различие между «приемлемыми причинами» и «реальными причинами» освоения космоса. Приемлемые причины могли бы включать экономические и национальные преимущества. Но реальные причины будут включать такие понятия, как любопытство, соревнование и создание наследия.

«Кто из нас не знаком с этим чудесным волшебным трепетом, когда мы видим что-нибудь новое, даже по телевизору, что никогда не видели раньше? - говорил Гриффин. - Когда мы делаем что-то ради реальных причин, не довольствуясь приемлемыми, мы производим наши лучшие достижения».

Нам нужно колонизировать космос, чтобы выжить


Наша способность выводить спутники в космос помогает нам наблюдать и бороться с насущными проблемами на Земле, от лесных пожаров и разливов нефти до истощения водоносных горизонтов, которые нужны людям для снабжения питьевой водой.

Но наш рост населения, жадность и легкомыслие приводят к серьезным экологическим последствиям и повреждениям нашей планеты. Оценки 2012 года говорили о том, что Земля сможет выдержать от 8 до 16 миллиардов человек - а ее население уже перешагнуло отметку в 7 миллиардов. Возможно, нам нужно быть готовыми к колонизации другой планеты, и чем быстрее, тем лучше.

Научные исследования, проводимые в космосе, охватывают различные разделы четырех наук: астрономии, физики, геофизики и биологии. Правда, такое разграничение носит нередко условный характер. Изучение, например, космических лучей вдали от Земли является скорее астрономической, чем физической задачей. Но и по традиции и в силу применяемой методики исследование космических лучей относят обычно к физике. То же, впрочем, можно сказать об исследовании радиационных поясов Земли, которое мы посчитали геофизической проблемой. Кстати, большинство задач, изучаемых на спутниках и ракетах, относят иногда к новой науке - экспериментальной астрономии.

Это название, однако, не является общепринятым и, может быть, не привьется. В будущем терминология, вероятно, как-то будет уточнена, но можно думать, что и принятая здесь классификация не приведет к недоразумениям.

ПОЧЕМУ НУЖНЫ ИМЕННО СПУТНИКИ ИЛИ КОСМИЧЕСКИЕ РАКЕТЫ!

Ответ на этот вопрос очевиден, когда речь идет об изучении Луны и планет, межзвездной среды, земной ионосферы и экзосферы. В других случаях спутники нужны для того, чтобы выйти за пределы атмосферы, ионосферы или действия земного магнитного поля.

В самом деле, наша Земля окружена как бы тремя поясами брони. Первый пояс - атмосфера - представляет собой слой воздуха весом в 1000 г на каждый квадратный сантиметр земной поверхности. Масса воздуха сосредоточена в основном в слое толщиной в 10-20 км. По весу этот слой равен весу слоя воды толщиной в 10 м. Иначе говоря, с точки зрения поглощения различных внеземных излучений мы как бы находимся под 10-метровым слоем воды. Даже плохой ныряльщик представляет себе, что такой слой отнюдь не является тонким. Атмосфера сильно поглощает ультрафиолетовые лучи (длина волны короче 3 500-4 000 ангстрем) и инфракрасное излучение (длина волны больше 10 000 ангстрем).

Этот слой не пропускает также рентгеновские лучи, гамма-лучи космического происхождения, а также первичные космические лучи (быстрые заряженные частицы - протоны, ядра и электроны), приходящие из космоса.

Для видимых лучей атмосфера в безоблачное время прозрачна, но и в этом случае она мешает наблюдениям, вызывая мерцание звезд и другие явления, обусловленные движением воздуха, пылью и т. п. Именно поэтому большие телескопы устанавливают на горах в особо благоприятных районах, но и в этих условиях они работают в полную силу лишь небольшую часть времени.

Чтобы избавиться от поглощения в атмосфере, обычно достаточно поднять аппаратуру на 20-40 км, что можно осуществить еще с помощью шаров (баллонов). Не всегда, однако, достаточно подняться до такой высоты. К тому же шары способны продержаться в атмосфере лишь несколько часов и собирают информацию только в районе запуска. Спутник же может летать практически неограниченное время и (в случае близких спутников) за 1,5 часа облетает весь земной шар.

Второй пояс брони - земная ионосфера - начинается с высоты в несколько десятков и простирается до сотен километров над поверхностью Земли. В этой области газ сильно ионизирован и концентрация электронов - их число в кубическом сантиметре - довольно значительна. Выше 1 000 км газа весьма мало, но все же примерно до 20 000 км концентрация газа составляет несколько сот частиц на кубический сантиметр.

Эта область иногда называется экзосферой, или геокороной. От ионосферы она отличается только тем, что здесь частицы практически не сталкиваются между собой; концентрация газа в этой области примерно постоянна. Еще дальше от Земли (как в ее окрестности, так и при переходе к межпланетному пространству) сведений о плотности газа почти нет. В настоящее время считается, что здесь концентрация газа меньше 100 частиц на кубический сантиметр.

Ионосфера обычно не пропускает радиоволн длиннее 30 м (более длинные волны - до 200-300 м - могут проходить через ионосферу ночью; в некоторых случаях проходят также очень длинные волны). Кроме того, даже если радиоволна космического происхождения достигает Земли, ионосфера в той или иной мере искажает ее, причем эти искажения заметны даже для метровых волн. Ионосфера не пропускает также мягких (длинноволновых) рентгеновских и далеких ультрафиолетовых лучей (волны с длиной от десятков примерно до 1 000 ангстрем).

Третий броневой пояс Земли - это ее магнитное поле. Оно простирается на 20-25 земных радиусов, то есть примерно на 100 000 км (всю эту область иногда называют магнитосферой Земли). На больших расстояниях земное поле того же порядка (или меньше), что и магнитное поле в межпланетном пространстве и поэтому не играет особой роли. Земное магнитное поле не подпускает к Земле, если не говорить о полярных районах, заряженных частиц с не слишком высокой энергией. Например, на экваторе в вертикальном направлении Земли могут достичь идущие из космоса протоны (ядра атомов ) только с энергией, большей 15 миллиардов электроновольт. Такой энергией обладает протон, ускоренный в электрическом поле с разностью потенциалов, равной 15 миллиардам вольт.

Отсюда ясно, что в зависимости от характера задачи нужно поднимать аппаратуру выше нескольких десятков километров (атмосфера), выше сотен километров (ионосфера) или даже удаляться от Земли на многие десятки тысяч километров (магнитное поле).

ИОНОСФЕРА И МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Только ракеты и спутники позволяют непосредственно изучать ионосферу и земное магнитное поле на больших высотах.

Один из применяемых методов наблюдения состоит в следующем. На борту спутника имеется передатчик, который излучает волны с частотой 20 и 90 мегагерц (длина волны в вакууме соответственно 15 м 333 см). При этом существенно, что разность фаз обоих этих колебаний (волн) в самом передатчике строго фиксирована. Когда обе волны проходят через ионосферу, их фазы изменяются, причем различным образом. На высокочастотное колебание (90 мегагерц) ионосфера почти не оказывает влияния, и волна распространяется почти так же, как в вакууме. На низкочастотное колебание (20 мегагерц), напротив, прохождение сквозь ионосферу накладывает свой отпечаток. Поэтому в приемном устройстве разность фаз между колебаниями в обеих волнах уже отлична от разности фаз в передатчике. Изменение разности фаз прямо связано с полным числом электронов, находящихся на луче зрения между спутником и приемником. С помощью этого и других методов удается получить «разрезы» ионосферы во всех тех направлениях, о которых ее просвечивает радиолуч, идущий от спутника.

Что касается земного магнитного поля, то его направление и величина определяются с помощью специальных приборов - магнитометров. Существуют разные типы таких приборов, некоторые из них с успехом применены на космических ракетах.

По понятным причинам явилась первым внеземным небесным телом, к которому устремились космические ракеты. Исследования установили, что магнитное поле Луны по крайней мере в 500 раз слабее земного, а возможно, и еще меньше. Луна не имеет также и ярко выраженной ионосферы, то есть окружающего ее слоя ионизированного газа. Были получены фотографии обратной стороны Луны. Можно не сомневаться, что в недалеком будущем будут получены более детальные фотографии Луны, а селенография («лунная
география») обогатится многими новыми открытиями.

Кроме того, возникло и немало новых проблем, касающихся исследований Луны, Так, например, необходимо изучение сейсмической деятельности на Луне. До сих пор не ясно, является ли Луна совершенно холодным телом или на ней время от времени происходит извержение вулканов и возникают землетрясения (видимо, их правильнее называть лунотрясениями). Как решить этот вопрос! Очевидно, нужно высадить на Луну сейсмограф и фиксировать колебания лунной поверхности, если они имеются. Можно также определить радиоактивность лунных пород и некоторые другие их свойства. Все это сделают приборы-автоматы, а полученные ими результаты будут передаваться по радио на Землю. Можно не сомневаться также в том, что в будущем Луна будет использована как космическая станция для целого комплекса исследований. Там для этого идеальные условия: у Луны нет ни атмосферной, ни ионосферной, ни, наконец, магнитной брони. Другими словами, Луна обладает теми же преимуществами, что и далекие искусственные спутники; в то же время использовать ее во многих отношениях удобнее и проще.

НА ОЧЕРЕДИ - МАРС И ВЕНЕРА

О планетах мы знаем довольно мало. Точнее, наши сведения о них очень односторонне о некоторых вопросах знаем много, а о других очень мало. До сих пор, например, ведется спор, есть ли растительность на , каковы климатические условия на этой планете, каков химический состав атмосферы. О много пишут, и задачи, стоящие перед ее исследователями, хорошо известны. Достаточно сказать, что поверхность Венеры очень плохо видна, поэтому мы знаем о ней еще меньше, чем о поверхности Марса. Кстати, в отношении Венеры с достоверностью неизвестен даже период ее вращения, неизвестно, есть ли у нее магнитное поле. Существование поля не установлено и для Марса. Эти нерешенные вопросы должны быть выяснены с помощью космических ракет.

Следующим после Марса и Венеры интересным объектом исследования будет - самая большая планета солнечной системы, планета с целым рядом особенностей. Об одной из них хотелось бы упомянуть. Юпитер является источником очень мощных радиоволн, излучаемых, например, в пятнадцатиметровом диапазоне. Это - своеобразное явление, которое исследуется сейчас радиоастрономическими методами. Юпитер будет и должен изучаться также и с помощью спутников.

Продолжение следует.

P. S. О чем еще думают британские ученные: о том, что при дальнейших исследованиях космоса придется и писать особые требования безопасности в аварийных ситуациях при работе на космических станциях, а то и в открытом космосе, где космонавта-исследователя подстерегает множество опасностей.

Человека всегда интересовало, как устроен окружающий его мир. На первых порах это были простые наблюдения и наивные толкования происходящих явлений. Они дошли до нас в виде сказаний и мифов. Постепенно знания накапливались. Древние учёные, наблюдая за Солнцем и Луной, смогли предсказывать солнечные и лунные затмения, составлять календари. Точность этих расчётов поражает современных исследователей: ведь в те времена не было никаких приборов, учёные вели свои наблюдения невооружённым глазом.

Позднее были созданы различные приборы, облегчающие наблюдения. Важнейшим из них стал телескоп (от греческих слов «теле» - далеко, «скопео» - смотреть). Использование телескопов позволило не только изучить Солнечную систему, но и заглянуть в глубины Вселенной.

Следующим шагом в изучении и освоении космоса стало создание ракеты. Первым учёным, который доказал, что реальным средством освоения космоса станет ракета, был наш соотечественник, основоположник современной космонавтики Константин Эдуардович Циолковский (1857-1935). Но прошли годы, прежде чем эта задача была решена. 4 октября 1957 г. в нашей стране был осуществлён запуск первого искусственного спутника Земли.

Большой вклад в развитие отечественной космонавтики внёс учёный, конструктор и организатор производства ракетнокосмической техники Сергей Павлович Королёв (1906-1966) . Началась новая эра в изучении космоса.

В настоящее время в освоении космоса участвуют Россия, США, многие страны Европы, Япония, Китай, Индия, Бразилия, Канйда, Украина. Осуществлён запуск космических станций к планетам Солнечной системы и их спутникам, получены их фотографии с близкого расстояния, осуществлена посадка на поверхность Венеры, Марса и других планет.

Некоторые важнейшие даты в освоении космоса

3 ноября 1957 г. - запуск второго искусственного спутника Земли «Спутник-2», на борту которого впервые находилось живое существо - собака Лайка (СССР).

14 сентября 1959 г. - станция «Луна-2» впервые в мире достигла поверхности Луны, доставив вымпел с гербом СССР (СССР).

4 октября 1959 г. - станция «Луна-3» впервые в мире сфотографировала невидимую с Земли сторону Луны (СССР).

19-20 августа 1960 г. - первый орбитальный полёт в космос живых существ - собак Белки и Стрелки - на корабле «Спутник-5» с успешным возвращением на Землю (СССР).

12 апреля 1961 г. - первый полёт человека в космос на корабле «Восток-1» (Юрий Алексеевич Гагарин, СССР).

16-19 июня 1963 г. - первый полёт в космос женщины-космонавта на космическом корабле «Восток-6» (Валентина Владимировна Терешкова, СССР).

18 марта 1965 г. - первый выход человека в открытый космос из корабля «Восход-2» (Алексей Архипович Леонов, СССР).

1 марта 1966 г. - первый перелёт космического аппарата с Земли на другую планету; станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР (СССР).

15 сентября 1968 г. - возвращение космического аппарата «Зонд-5» на Землю после первого облёта Луны. На борту находились живые существа: черепахи, плодовые мухи, черви, растения, семена, бактерии (СССР).

21 июля 1969 г. - первая высадка человека на Луну в рамках лунной экспедиции корабля «Аполлон-11», доставившей на Землю в том числе и пробы лунного грунта (Нил Армстронг, США).

3 марта 1972 г. - запуск первого аппарата «Пионер-10», покинувшего впоследствии пределы Солнечной системы (США).

12 апреля 1981 г. - вывод на орбиту первого многоразового транспортного космического корабля «Колумбия» (США).

24 июня 2000 г. - станция «Near Shoemaker» стала первым искусственным спутником астероида (США).

28 апреля - 6 мая 2001 г. - полёт первого космического туриста на борту корабля «Союз-ТМ-32» на Международную космическую станцию (Деннис Тито, США).

  1. Как древние люди изучали Вселенную?
  2. Кто из учёных доказал, что осваивать космос можно с помощью ракеты?
  3. Когда был запущен первый искусственный спутник Земли?
  4. Кто был первым космонавтом?

Человека всегда интересовало, как устроен окружающий его мир. В древности люди наблюдали и пытались объяснить происходящие в природе явления. Позднее были созданы различные приборы, важнейшим из которых стал телескоп. Использование телескопов позволило не только изучать Солнечную систему, но и заглянуть в глубины Вселенной. Следующим шагом в изучении и освоении космоса стало создание ракеты. Большой вклад в развитие отечественной космонавтики внесли К. Э. Циолковский, С. П. Королёв, Ю. А. Гагарин. В настоящее время в освоении космоса участвуют многие страны мира, в том числе и Россия.

Современные представления о строении Вселенной складывались постепенно, на протяжении веков. Долгое время её центром считалась Земля. Такой точки зрения придерживались древнегреческие учёные Аристотель и Птолемей.

Новую модель Вселенной создал Николай Коперник - великий польский астроном. Согласно его модели, центром мира является Солнце, а вокруг него обращаются Земля и другие планеты. Согласно современным представлениям, Земля входит в состав Солнечной системы, которая является частью Галактики. Галактики образуют сверхскопления - мегагалактики.

Солнечную систему образуют 8 планет с их спутниками, астероиды, кометы, множество частичек пыли. Планеты делят на две группы. Меркурий, Венера, Земля, Марс - это планеты земной группы. К группе планет-гигантов относят Юпитер, Сатурн, Уран, Нептун.

Астероиды и кометы - небольшие небесные тела, входящие в состав Солнечной системы. Метеором называют вспышку света, возникающую при сгорании в земной частичек космической пыли, а космические тела, не сгоревшие в атмосфере и достигшие поверхности Земли, называют метеоритами.

Звёзды - это гигантские пылающие шары, расположенные очень далеко от нашей планеты. Ближайшая к нам звезда - Солнце, центр нашей Солнечной системы.

Земля - уникальная планета, только на ней обнаружена жизнь. Существованию живого способствует ряд особенностей Земли: определённое расстояние от Солнца, скорость вращения вокруг собственной оси, наличие воздушной оболочки и больших запасов воды, существование почвы.

В древности люди наблюдали за происходящими в природе явлениями и пытались их объяснить. Изобретение различных приборов, в том числе телескопа, облегчило эти наблюдения. Следующим шагом в изучении и освоении космоса стало создание ракеты. В настоящее время в освоении космоса принимают участие многие страны мира.

Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:


Поиск по сайту.

Не все результаты фундаментальных научных исследований порождают технологии, но абсолютно все современные технологии базируются на фундаментальных научных исследованиях.

Все окружающие нас достижения цивилизации обязаны своим существованием проводившимся ранее фундаментальным научным исследованиям.

Теперь в силу ускорения научно-технического прогресса результаты научных исследований находят применение в технике и быту уже в среднем через промежуток времени 20 - 30 лет. Часть из них вносят решающий вклад в технический прогресс.

Значительную роль в этом процессе играют и фундаментальные науки, изучающие Вселенную. Достаточно напомнить, что гелий был открыт на Солнце и только потом найден на Земле. Для ядерной физики некоторые объекты во Вселенной являются естественной лабораторией, где сама Природа ставит эксперименты, которые невозможны в земных лабораториях. Еще в 1920 году, задолго до создания ядерной физики, на термоядерную реакцию превращения водорода в гелий было указано Артуром Эддингтоном, как на источник энергии излучения звезд.

Кроме того, фундаментальные космические исследования оказывают мощное прямое воздействие (с которым может сравниться, разве что, оборонная индустрия) на развитие технологий. Это происходит из-за постоянных требований экспериментаторов к повышению чувствительности, разрешающей способности и улучшению других параметров научных приборов.

Фундаментальные космические исследования дали мощный толчок развитию наших представлений об устройстве Вселенной

По мнению многих выдающихся ученых современности, на рубеже ХХ и ХХI веков мы стали свидетелями «революции» в астрономии, которая имеет не менее важное значение, чем, ставшая основополагающей для многих отраслей науки, а значит и современных технологий, «революция» в физике, которая произошла в начале ХХ века.

Огромную роль в этом уже сыграли космические средства, обеспечивающие научные исследования многих объектов Вселенной.

В Федеральной космической программе России 2006 - 2015 годы запланировано выполнение более двух десятков проектов научного назначения.

Среди них полномасштабные космические проекты, в рамках которых должны быть созданы специализированные космические аппараты, снабженные целевыми комплексами научной аппаратуры. Кроме того, будет практиковаться дополнительная установка комплексов научной аппаратуры на отечественные космические аппараты, предназначенные для решения народно - хозяйственных задач, а также установка отечественной научной аппаратуры на зарубежные космические аппараты научного назначения.

Особенностью реализации научных космических проектов будет максимальное использование т.н. унифицированных космических платформ - основных составляющих космических аппаратов, на которые возлагаются функция обеспечения необходимых условий работы полезной нагрузки - целевой аппаратуры: для научных исследований, дистанционного зондирования Земли , обеспечения радиосвязи и т.п.

В рамках Федеральной космической программы России 2006 - 2015 годы в разделе «Космические средства для фундаментальных космических исследований» и разделе «Космические средства технологического назначения» предусмотрено, что они и далее будут проводиться по следующим основным направлениям:

  • внеатмосферная астрофизика - получение научных данных о происхождении и эволюции Вселенной;
  • планетология - исследование планет и малых тел Солнечной системы;
  • изучение Солнца, космической плазмы и солнечно - земных связей;
  • исследования в областях космических биологии, физиологии и материаловедения.

Внеатмосферная астрофизика - получение научных данных о происхождении и эволюции Вселенной

Современные астрофизические космические исследования позволяют получить уникальные данные об очень отдаленных космологических объектах, и о событиях происшедших в период зарождения звезд и галактик

Планетология - исследование планет и малых тел Солнечной системы

Эти исследования имеют первостепенное значение для понимания процессов возникновения и развития Солнечной системы. Однако прежде всего, они дают ключ к познанию возможных путей будущей эволюции нашей собственной планеты, к пониманию того, как сохранить возможность существования жизни на Земле для наших потомков.

Изучение Солнца, космической плазмы и солнечно - земных связей

Солнце является ближайшей к нам и довольно типичной звездой, которая наблюдается как протяженный объект. Оно само и его корона представляют собой естественную лабораторию для изучения фундаментальных характеристик плазмы.

Научная значимость исследований Солнца состоит еще и в том, что оно оказывает решающее влияние на основные процессы на Земле, в том числе на некоторые технические системы. Такое воздействие сказывается на работе различных радиосистем, энергосетей, проводных линий связи в Арктике, на интенсивности индуцированных электрических токов в трубопроводах и т.д. В качестве примера можно привести два известных случая выхода из строя протяженных энергосетей: 13 марта 1989 г. при резкой вспышке магнитных вариаций наведенный электрический ток в энергосистеме Hydro-Quebec в Канаде достиг 100 ампер, что вывело эту систему из строя. Это надолго оставило без энергии большой район с населением в несколько миллионов человек. Аналогичные случаи были и в нашей Арктике, например 11-12 февраля 1958 г. на Кольском полуострове. Для нефтепроводов наведенные в них электрические токи, замыкаясь на землю, резко усиливают коррозию, а искрение может приводить к пожарам в местах утечек. Серьезность проблемы лишний раз была продемонстрирована и полным выходом из строя телевизионного ретрансляционного спутника «Telstar-401» произошедшим 11 января 1998 г. в результате его усиленного облучения энергичными частицами.

Постепенно возникает осознание того, что проявления солнечной активности оказывает сильное влияние и на организм человека.

Космический комплекс, обеспечивающий получение результатов комплексных наблюдений излучений Солнца, процессов накопления энергии и ее трансформации в ускоренные частицы во время солнечных вспышек с целью мониторинга «космической погоды» и выработки мероприятий по парированию негативного влияния на здоровье человека.

Исследования в областях космических биологии, физиологии и материаловедения

Изучение воздействия невесомости на живые организмы и физиологических механизмов адаптации к ней в космических полетах, а также изучение комбинированного действия невесомости и других факторов имеют огромное значение для длительных полетов человека, столь необходимых для освоения планет Солнечной системы.

Использование низших организмов для проведения медико-биологических экспериментов (в отличие от экспериментов на человеке) предоставляет возможность более жесткой их постановки, включая последующее препарирование использованного биологического материала. Исследования внутриклеточных процессов, клеток, тканей, органов и организмов в целом на автоматических космических аппаратах серии принесли очень важные результаты. Были получены данные об отсутствии серьезных биологических ограничений продолжительности пребывания живых организмов и человека в условиях космического полета. Показана перспективность применения искусственной силы тяжести для поддержания оптимального состояния организма и предотвращения в нем необратимых изменений. Найдены доказательства необходимости строго дифференцированного подхода к созданию тренажеров для различных мышц и мышечных групп человека.

Физика микрогравитации

Использование космических средств для решения задач космического материаловедения позволяет получать в условиях микрогравитации образцы материалов обладающих уникальными свойствами по сравнению с земными аналогами.

Принципиально новый космический комплекс с возвращаемым космическим аппаратом для проведения ми-крогравитационных экспериментальных исследований предназначен для обеспечения получения фундаментальных знаний о процессах, проходящих в расплавах и растворах, а также в биологических структурах в условиях сверхнизких (ниже 10 -7 g) уровней микрогравитации, в целях их последующего использования при организации промышленного производства новых материалов и биопрепаратов как на Земле, так и с использованием космического комплекса «ОКА-Т-МКС». Срок активного существования космического аппарата на орбите - 1 год

Запуск космического аппарата намечен на 2015 год.

Космический комплекс на основе обслуживаемого в инфраструктуре МКС автоматического космического аппарата, предназначенного для комплексного решения задач в области микрогравитационных и прикладных технологических и биотехнологических исследований.

http://www.roscosmos.ru/main.php?id=25

EmDrive - это двигатель на микроволновой тяге с питанием от солнечной электроэнергии, который может быть запущен в глубокий космос без жидкого топлива и разогнать космический аппарат до скорости, намного превышающей доступную сегодня. На самом деле никто не знает, как этот двигатель работает - по сути, он нарушает закон сохранения импульса. Есть мнение, что двигатель работать не будет, поскольку в эксперименте закралась ошибка.

5. Сообщения Hello Kitty

Япония пытается заинтересовать детей и студентов в изучении астрофизики, посылая Hello Kitty в космос на спутнике и принимая отправленные игрушкой сообщения на Земле. Одна из целей проекта - привлечь инвестиции частных компаний в спутники. Поскольку Hello Kitty является одним из самых популярных персонажей в Японии, ее культурная популярность поможет повысить осведомленность о космической технике. Sanrio, материнская компания Hello Kitty, также проводит конкурс, который позволит людям отправлять сообщения своим близким прямо из космоса.

6. «Розетта»


Охотник за кометами «Розетта» на орбите кометы, направляющейся к Солнцу со скоростью 40 000 километров в час. Космический корабль путешествовал к комете 10 лет, чтобы спустить небольшой исследовательский аппарат на ее поверхность в ноябре и сделать забор материала кометы. Цель судна - понять, как планеты могли быть сформированы из комет.

7. Японский космический лифт


Корпорация Obayashi, расположенная в Токио, планирует построить к 2050 году космическую станцию, которая будет на высоте 36 000 километров над Землей. Компания планирует отправлять туристов вверх на лифте из углеродных нанотрубок со скоростью около 200 километров в час (путешествие займет примерно неделю) и питать все устройство солнечными батареями на космической станции, плавающей в качестве противовеса чуть выше. Obayashi говорит, что понятия не имеет, сколько будет стоить такой проект, но работает над ним.


Tethers Unlimited заключила контракт на 500 000 долларов на разработку средства под названием SpiderFab, которое будет использовать 3D-принтеры для создания структур, для помощи нам в поиске внеземной жизни. Основной задачей SpiderFab будет избавить нас от необходимости отправлять что-либо с Земли - все будет собираться прямо в космосе.

3D-печать предлагает массу выгодных преимуществ для освоения космоса: снижение времени путешествий, стоимости, отходов, увеличение настраиваемости и подгонки размеров частей. Не хватало только материалов. NASA разработало 3D-принтер, который может выбирать между различными типами сплавов для печати частей космических аппаратов. SpaceX недавно напечатала главный клапан окислителя для одной из своих ракет с помощью такого принтера. Компания сообщила, что будет использовать технологию в течение трех лет и скоро попытается напечатать двигательную камеру.


Космический самолет Skylon, разработанный британским инженером, может использоваться для самых разных целей, от экстренного реагирования до космический миссий. Принцип посадки и взлета Skylon аналогичен обычному самолету - за исключением того, что ему нужна большая взлетная полоса - но двигатели работают на жидком кислороде и водороде. Команда изобретателей утверждает, что Skylon будет готов к полетам в 2018 году.

10. Напечатанные на 3D-принтерах


Один из аэрокосмических инженеров NASA работает над строительством космического телескопа полностью из 3D-печатных частей. Используя быстрое прототипирование для 3D-печати с использованием металла, NASA утверждает, что может завершить один проект всего за три месяца. Космические телескопы трудно изготавливать, поэтому 3D-печать всех частей - от зеркал до камеры - поможет преодолеть материальные и операционные трудности.