Россияне решили спасти планету от астероида «смерти. Уральский ученый рассказал, когда в нас врежется большой астероид и что с этим делать Насколько опасно и возможно столкновение в Землей

Ученые и инженеры из США под руководством астрофизика Филипа Любина (Калифорнийский университет в Санта-Барбаре) на сайте arXiv.org препринт под названием «Направляемые энергетические миссии для планетарной защиты». В статье подробно описан проект, реализация которого позволит обезопасить Землю в ситуации вроде той, что показана в фильме «Армагеддон», то есть предотвратить столкновение нашей планеты с астероидом. Исследования по программе DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) выполняются при поддержке НАСА.

Альтернативными сценариями защиты Земли от астероидной угрозы являются: (1а) кинетический удар без прямого использования взрывчатого вещества (например, в результате столкновения двух астероидов), (1б) кинетический удар со взрывом (в частности, использование ядерного оружия), (2) изменение альбедо астероида (путем окрашивания его поверхности) или использование эффекта Ярковского , (3) отклонение астероида от первоначальной траектории ионным пучком, (4) подведение к астероиду устройства с двигательной установкой (например, жидкотопливной ракеты), (5) использование тяжелого аппарата-спутника, который будет вращаться вокруг астероида и постепенно корректировать его траекторию, (6) высадка на поверхность небесного тела робота, который начнет его разрушать и создавать небольшую реактивную силу, корректирующую траекторию небесного тела и (7) испарение поверхностного вещества астероида фокусирующимися солнечными лучами.

Земля постоянно сталкивается с астероидами. Большинство из них сгорает в атмосфере, небольшие осколки некоторых достигают поверхности планеты. Локальную катастрофу могут вызвать астероиды размером до километра, глобальную - диаметром от нескольких километров. По оценкам, астероиды первого типа падают на Землю раз в несколько десятков тысяч лет, второго - не чаще одного раза в несколько десятков миллионов лет. Наибольшую опасность для Земли представляют астероиды, относящиеся к группам Апполон (около шести тысяч небесных тел) и Атон (менее тысячи), пересекающие траекторию движения планеты с внешней (первые) и внутренней (вторые) стороны их орбиты.

Один из самых молодых, крупных и хорошо сохранившихся артефактов столкновения Земли с астероидом - Аризонский кратер (США). В диаметре он достигает 1,2 километра, в глубину - 170 метров. Кратер опоясывает обод высотой 45 метров, а в центре - холм высотой 240 метров. При падении метеорита высвободилось в восемь тысяч раз больше энергии, чем при взрыве атомной бомбы в Хиросиме. Столкновение произошло около 50 тысяч лет назад. Метеорит диаметром порядка 50 метров врезался в земную поверхность со скоростью примерно 13 километров в секунду. Если бы такой объект упал сегодня на любой город с многомиллионным населением, катастрофа (локальная) была бы неизбежна.

Любин предлагает решение, позволяющее избежать таких (локальных, но не глобальных) катастроф. На потенциально опасные объекты (ПОО), к которым относятся прежде всего астероиды, предполагается воздействовать излучением массива лазеров. В результате траектория полета небесного тела меняется, и столкновение не происходит. Используется механизм лазерной абляции - вещество удаляется с поверхности тела испарением или сублимацией за счет разогрева. Утекающая с небесного тела в одну сторону материя создает реактивную тягу, толкающую астероид в противоположном направлении.

Предлагаемый проект называется DE-STARLITE и представляет собой модификацию программы DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation), поддерживаемой НАСА. В отличие от DE-STAR, подробно уже «Лентой.ру» в связи с разрабатываемой командой Любина концепцией миссии по отправке небольшой автоматической станции к альфе Центавра, DE-STARLITE предполагает использование гораздо менее мощных лазеров, действующих не с поверхности планеты или околоземной траектории, а в непосредственной близости от астероида (нескольких километрах и более).

В отличие от программы ARM, разрабатываемой НАСА для захвата астероида диаметром 5-10 метров и его доставки на окололунную орбиту, проект DE-STARLITE предназначен для небольшого отклонения небесного тела от своей первоначальной траектории.

Корабль DE-STARLITE доставит к астероиду массив лазеров системы DE-STAR-0 мощностью от ста киловатт (самой слабой из семейства DE-STAR). Разрабатываемая командой Любина система не выходит, по словам ее создателей, за рамки технических и конструкторских ограничений, накладываемых НАСА на (Asteroid Redirect Mission). Концептуально корабль устроен следующим образом. Спереди центральная часть аппарата образована фазированной антенной решеткой диаметром до 4,5 метра (примерно такой же диаметр корабля в сложенном состоянии). Сзади и по бокам - ионные двигатели, по сторонам - пара радиаторов (сверху и снизу) и фотоэлектрические батареи (справа и слева). В головной обтекатель ракеты-носителя панели и радиаторы устанавливаются в сложенном состоянии. Панели развертываются из передней части корабля, радиаторы - из задней.

В опубликованной работе рассматриваются солнечные панели американской компании Orbital ATK. Их аналог (предыдущего поколения) был установлен на марсианском посадочном модуле Phoenix . Диаметр панелей равен 15 метрам, мощность - по 50 киловатт. Коэффициент полезного действия - 35 процентов (и, по оценкам Любина, 50 процентов через пять лет). Лазерной фазированной антенной решетки достаточно для разогрева поверхности небесного тела до 2,7 тысячи градусов Цельсия и начала абляции. В минимальной версии (с диаметром решетки в один метр) система позволяет с расстояния десяти километров получить на астероиде лазерное пятно диаметром десять сантиметров.

Изображение: Q. Zhang

Увеличение размеров решетки (при сохранении расстояния между станцией и астероидом) потребует большего числа элементов и даст пятно большей площади. Всего в решетке диаметром два метра 19 элементов, каждый из которых развивает мощность до трех киловатт. Радиатор z-образной формы раскладывается в 18 сегментов площадью 4,8 квадратных метра каждый. Радиаторные панели будут вращаться вокруг своей оси и располагаться перпендикулярно к диску Солнца. Модульный характер системы DE-STAR-0 позволяет масштабировать корабль DE-STARLITE до необходимых мощностей и размеров. В частности, пара солнечных панелей диаметром 30 метров способна развивать мощность до мегаватта. Возможные ограничения связаны с дороговизной массива лазеров и пусковых услуг.

На низкую околоземную орбиту (от 160 до двух тысяч километров от поверхности планеты) Atlas V 551 способен доставлять 18,5 тонны (13,2 тысячи долларов за килограмм), SLS Block 1 - 70 тонн (18,7 тысячи долларов за килограмм), Falcon Heavy - 53 тонны (1,9 тысячи долларов за килограмм) и Delta IV Heavy - 28,8 тонны (13 тысяч долларов за килограмм). Диаметр головного обтекателя у ракет - стандартный (пять метров или немного больше), кроме сверхтяжелой и самой дорогой из перечисленных SLS Block 1, у которой он равен 8,4 метра. В базовой конфигурации размеры (4,6 на 12,9 метров в сложенном состоянии) и масса корабля DE-STARLITE подходят под эти параметры.

Корабль DE-STARLITE предполагается запускать при помощи стандартной ракеты-носителя, работающей на жидком топливе, а транспортировку к ПОО осуществлять посредством ионных двигателей, которые также будут задействованы в маневрировании станции вблизи небесного тела. Ученые и инженеры отмечают, что возможности американских и европейских ракет Atlas V 551, Ariane V и Delta IV Heavy, а также строящихся Falcon Heavy и SLS (Space Launch System), позволяют запустить миссию уже сегодня. Российские тяжелые ракеты «Протон-М» и «Ангара-А5» Любин в своей работе не рассматривал. Исследователи оценили стоимость американских пусковых услуг для вывода на орбиту корабля DE-STARLITE.

На направленное разрушение и отклонение траектории астероида типа (99942) Апофис (в диаметре достигающего 325 метров) на расстояние двух земных радиусов может уйти 15 лет при мощности лазерной системы DE-STARLITE в сто киловатт (с коэффициентом полезного действия 35 процентов). Чтобы добиться того же за пять лет, потребуется мощность в 870 киловатт. Впервые обнаруженный в 2003 году ПОО испугал ученых: расчеты показывали высокую вероятность того, что в в 2036 году он столкнется с Землей. Современные данные снизили эту вероятность в сотни тысяч раз.

Предложенный Любином метод работает в случае своевременного обнаружения ПОО, что пока крайне редко (особенно при наблюдении наземными средствами). Ежегодно НАСА около 1,5 тысячи околоземных объектов. В настоящее время агентство концентрирует свои усилия на поиске более мелких астероидов диаметром менее 90 метров. В НАСА полагают, что удалось обнаружить примерно 90 процентов небесных тел размерами более 90 метров в поперечнике. Большинство новых околоземных объектов выявляется менее чем за 15 дней до их сближения с Землей. Столкновение крупного астероида с планетой - лишь вопрос времени. Скорее всего, практическую задачу избавления от этой угрозы придется решать следующим поколениям землян. Однако уже сейчас разумно прекратить игру в рулетку и начать принимать какие-то меры для ликвидации астероидно-кометной опасности.

Астероиды несут реальную угрозу для Земли. Учёные придумали несколько десятков способов изменения орбиты небесных тел. Подробнее о проектах, призванных спасти нашу планету от астероидов, рассказывает TNENERGY

Импакт

Тунгусский метеорит взорвался 17 июня 1908 года над тайгой в Сибири на высоте нескольких километров. Мощность взрыва оценивается в 40-50 мегатонн, что соответствует энергии самой мощной из взорванных водородных бомб. По другим оценкам, мощность взрыва соответствует 10-15 мегатоннам.

Импактом называется попадание астероида (в принципе любого размера) в Землю, с последующим выделением кинетической его энергии в атмосфере или на поверхности. Чем мельче импакт по энергии, тем чаще он происходит. Энергия импакта является хорошим способом определить опасно ли космическое тело для земли или нет. Первый такой порог - это где-то 100 килотонн тротилового эквивалента энерговыделения, когда прилетающий астероид (который по входу в атмосферу начинает именоваться метеоритом) перестает ограничиваться попаданием в ютьюб, а начинает приносить беды.

Моделирование атмосферного взрыва Тунгусского метиорита

Хорошим примером такого порогового события является челябинский метеорит 2014 года - небольшое тело характерными размерами 15...20 метров и массой ~10 тысяч тонн своей ударной волной нанесло повреждений на миллиард рублей и поранило ~300 человек.

Подборка видео падения Челябинского метиорита.

Однако челябинский метеорит целился очень хорошо, да и в целом не особо нарушил жизнь даже челябинска, не говоря уже о всей Земле. Вероятность случайного попадания в густонаселенную территорию при столкновении с нашей планетой составляет порядка нескольких процентов, поэтому реальный порог опасных объектов начинается с мощности в 1000 раз больше - порядка сотен мегатонн, характерной энергии импакта для тел калибра 140-170 метров.


В отличии от ядерного оружия, энерговыделение метеоритов более размазано в пространстве и времени, поэтому слегка менее смертоностно. На фото - испытание Ivy Mike, 10 мегатонн.

Такой метеор имеет радиус поражения в сотню километров, и удачно приземлившись, может прекратить многие миллионы жизней. Разумеется в космосе есть камени и побольше размером - 500 метровый астероид устроит региональную катастрофу, затронув местность в тысячах километров от места своего падения, полуторакилометровому под сил стереть жизнь с четверти поверхности планеты, а 10 километровый устроит новое массовое вымирание и точно уничтожит цивилизацию.

Теперь, когда мы откалибровали уровень армагеддона от размера, можно перейти к науке.

Околоземные астероиды

Импактором может, понятно, стать только тот астероид, орбита которого в будущем пересечет траекторию Земли. Проблема в том, что сначала такой астероид надо увидеть, затем измерить его траекторию с достаточной точностью и промоделировать ее в будущее. До 80-х годов количество известных астероидов, которые пересекали орбиту Земли исчислялось десятками, и ни один из них не представлял опасности (не проходил ближе 7,5 млн километров от орбиты Земли при моделировании динамики, скажем, на 1000 лет вперед). Поэтому изучение астероидной опасности в основном сосредотачивалось на вероятностном расчете - сколько тел размером более 140 метров может быть на пересекающих Землю орбитах? Как часто происходят импакты? Опасность оценивалась вероятностно “в следующем десятилетии получить импакт мощностью больше 100 мегатонн составляет 10^-5”, но вероятность не означает, что мы не получим глобальную катастрофу уже завтра.

Рассчет вероятной частоты импактов в зависимости от энергии. По вертикальной оси частота "случаев в год", по горизонтальной - мощность импакта в килотоннах. Горизонтальные полоски - допуски на величину. Красные отметки - наблюдения реальных импактов с ошибкой.

Однако качественный и количественный рост приводит к быстрому росту количества обнаруженных околоземных объектов. Появление в 90х ПЗС матриц на телескопах (которые подняли их чувствительность на 1-1,5 порядка) и одновременно автоматических алгоритмов обработки изображений ночного неба привело к росту темпа обнаружения астероидов (в т.ч. околоземных) на два порядка на рубеже веков.

Хорошая анимация обнаружения и движения астероидов с 1982 по 2012 год. Околоземные астероиды обозначены красным.

В 1998-1999 в строй вступает проект LINEAR - два телескопа-робота апертурой всего в 1 метр, снабженные всего 5-мегапиксельной (позже вы поймете, откуда “всего”) матрицей, с задачей обнаружений как можно большего количества астероидов и комет, в т.ч. околоземных. Это был не первый проект подобной направленности (на пару лет раньше был еще достаточно успешный NEAT), но первый, специально спроектированный для этой задачи. Телескоп отличали следующие особенности, которые затем станут стандартом:

    Специальная астрономическая матрица ПЗС, с обратной засветкой пикселя, увеличившая ее квантовую эффективность (количество зарегистрированных падающих фотонов) до почти до 100%, против 30% у стандартных не астрономических.

    Широкоугольный телескоп, позволяющих за ночь снимать очень большую поверхность неба

    Частный каденс - телескоп за ночь 5 раз фотографировал один и тот же участок неба с разрывом в 28 минут и повторял эту процедуру через две недели. Экспозиция кадра при этом составляла всего 10 секунд, после чего телескоп переходил на следующее поле.

    Специальные алгоритмы, которые вычитали из кадра звезды по каталогу (это было новшество) и искали движущиеся группы пикселей с определенными угловыми скоростями.

Оригинальный сложенный из 5 снимок телескопа LINEAR и после обработки алгоритмом. Красный кружок - околоземный астероид, желтые кружки - астеройды главного пояса.


Сам телескоп проекта LINEAR, расположенный в White Sands, штат Нью Мексико.

LINEAR станет звездой первой величины астероидного поиска, обнаружив за 12 следующих лет 230 тысяч астероидов и в том числе 2300 пересекающих орбиту Земли. Благодаря еще одному проекту MPC (Minor Planet Center) информация по найденным кандидатам в астероиды распространяется по разным обсерваториям для доп измерений орбит. В 2000-х в строй вступает похожий автоматизированный обзор неба Catalina (который будет больше нацелен на поиск именно околоземных объектов, и будет находить их сотнями в год).


Количество обнаруженных разными проектами околоземных астероидов по годам

Постепенно оценки вероятности армагеддона вообще начинают уступать оценкам вероятности смерти от конкретного астероида. Среди сначала сотен, а затем тысяч околоземных астероидов выделяется примерно 10% чьи орбиты проходят ближе 0,05 астрономических единиц от орбиты Земли (примерно 7,5 млн км), при этом размер астероида должен превышать размер 100-150 метров (абсолютную звездную величину тела солнечной системы H<22).

В конце 2004 НАСА рассказало миру о том, что обнаруженный в начале года астероид Апофис 99942 с вероятностью 1 к 233 попадет в Землю в 2029 году. Астероид, по современным измерениям имеет диаметр около 330 метров и оценочную массу в 4 миллиона тонн, что дает примерно 800 мегатонн энергии взрыва.

Радарное изображение астероида Апофис. Измерение траектории радаром в обсерватории Аресибо позволило уточнить орбиту и исключить вероятность столкновения с Землей.

Вероятность

Однако на примере Апофиса всплыла та самая вероятность конкретного тела стать импактором. Зная орбиту астероида с конечной точностью и интегрируя его траекторию опять же с конечной точностью, к моменту потенциального столкновения можно оценить только эллипс, в который придется, скажем, 95% возможных траекторий. По мере уточнения параметров орбиты Апофиса эллипс уменьшался, пока из него окончательно не выпала планета Земля, и теперь известно, что 13 апреля 2029 года астероид пройдет на расстоянии не менее 31200 км от поверхности Земли (но опять же, это ближайший край эллипса ошибки).


Иллюстрация того, как сжималась трубка возможных орбит астероида Апофис в моменте возможного столкновения по мере уточнения параметров орбиты. В итоге Земля оказалась не затронута.

Еще одна интересная иллюстрация по Апофису - рассчет возможных точек столкновения (с учетом неопределенности) для столкновения в 2036 году. Интересно, что траектория проходила рядом с местом падения Тунгусского метеорита.

Кстати, для быстрой оценки сравнительной опасности околоземных астероидов было разработано две шкалы - простая Туринская и более сложная Палермская . Туринская просто перемножает вероятность столкновения и размер оцениваемого тела, назначая ему значение от 0 до 10 (так, Апофис на пике вероятности столкновения имел 4 балла), а Палермская вычисляет логарифм соотношения вероятности импакта конкретного тела с фоновой вероятностью импакта такой энергии от сегодня до момента возможного столкновения.

При этом положительные значения по Палермской шкале означают, что одно единственное тело становиться более значимым потенциальным источником катастрофы, чем все остальные - открытые и неоткрытые вместе взятые. Еще один важный момент Палермской шкалы - это применяемая свертка вероятности импакта и его энергии, дающие довольно контринтуитивную кривую степени риска от размера астероида - да, 100 метровые камни вроде не способны причинять значимый ущерб, но их много и выпадают они относительно часто, в целом неся большее количество потенциальных жертв, чем 1,5 километровые “убийцы цивилизаций”.

Однако вернемся к истории обнаружения околоземных астероидов и средин них потенциально опасных объектов. В 2010 году в строй вступил первый телескоп системы Pan-STARRS, с сверхширокопольным телескопом апертурой 1,8 метра, оборудованный матрицей в 1400 мегапикселей!

Фотография галактики Андромеда с телескопа Pan-STARRS 1, позволяющая оценить его широкоугольность. Для сравнения в поле врисована полная луна и цветными квадратиками - "обычное" поле зрения больших астрономических телескопов.

В отличии от LINEAR он делает 30 секундные снимки с глубиной обзора в 22 зв. величины (т.е. мог обнаружить астероид размером 100-150 метров на расстоянии в 1 астрономическую единицу, против километрового предела на таком расстоянии для LINEAR), а высокопроизводительный сервер (1480 ядер и 2,5 петабайта жестких дисков) превращает снятые каждую ночь 10 терабайт в список транзиентных явлений. Тут надо отметить, что основное предназначение Pan-STARRS не поиск околоземных объектов, а звездная и галактическая астрономия - поиск изменений на небе, например далеких сверхновых, или катастрофических событий в тесных двойных системах. Однако в этом телескопе-бредне за год обнаруживались и сотни новых околоземных астероидов.


Серверная Pan-STARRS. Вообще говоря, фото аж 2012 года, сегодня проект довольно сильно расширился, добавлен второй телескоп, строится еще два.

Необходимо упомянуть и еще одну миссию - космический телескоп наса WISE и его продление NEOWISE. Этот аппарат делал снимки в далеком инфракрасном диапазоне, обнаруживая астероиды по их ИК свечению. Вообще говоря, изначально он был нацелен на поиск астероидов за орбитой нептуна - объектов пояса Койпера, рассеянного диска и коричневых карликов, но в миссии-продлении, после того, как в телескопе закончился хладагент, и его температура стала слишком велика для первоначальной задачи, этим телескопом было найдено порядка 200 околоземных тел.

В итоге, за последние 30 лет количество известных околоземных астероидов выросло с ~50 до 15000. Из них на сегодня 1763 занесены в список потенциально опасных объектов, из которых ни один не имеет оценок больше 0 по Туринской и Палермской шкалам.

Много астероидов

Много это или мало? После миссии NEOWISE NASA сделала переоценку модельного количества астероидов так:


Здесь на картинке закрашенным изображены известные околоземные астероиды (не только опасные объекты), контурами - оценка существующих но не найденных. Ситуация на 2012 год.

Современное синтетическое моделирование позволяет не только поточнее оценить общее количество, но и промоделировать вероятность обнаружения, и через это уточнить долю открытых астероидов.

Красная и черная кривая - модельные оценки количества тел разных размеров на околоземных орбитах. Синие и зеленые пунктирные линии - обнаруженное количество.

Черная кривая из предыдущей картинки в табличной форме.

Здесь в таблице размеры астероидов приведены в единицах H - абсолютных звездных величин для объектов солнечной системы. Грубый пересчет в размеры производится по этой формуле и из него можно сделать вывод, что нам известно больше 90% околоземных объектов размером больше 500 метров и примерно половина размером с апофис. Для тел от 100 до 150 метров известно всего около 35%.

Однако, можно вспомнить, что жалких 30 лет назад известно было около 0,1% опасных объектов, так что прогресс впечатляет.

Еще одна оценка доли обнаруженный астероидов в зависимости от размера. Для тел размером в 100 метров сегодня задетектированно несколько процентов об общего количества.

Однако это не конец истории. Сегодня в Чили сооружается телескоп LSST - еще один обзорный телескоп-монстр, который будет вооружен 8 метровой оптикой и 3,2 гигапиксельной камерой. За несколько лет, начиная с 2020, сняв примерно 7 петабайт снимков LSST, должен обнаружить ~100,000 околоземных астероидов, определив орбиты почти 100% тел опасных размеров.


LSST, кстати имеет очень необычную оптическую схему, где третее зеркало помещено в центр первого.


Охлаждаемая до -110 С 3,2 гигапиксельная камера с зрачком 63 см - рабочий инструмент LSST.

Человечество спасено? Не совсем. Есть класс камней, находящихся на внутренних по отношению к Земле орбитах в резонансе 1:1, которые очень сложно увидеть с Земли, есть долгопериодические кометы - обычно относительно крупные тела, обладающие очень высокими по отношению к Земле скоростями (т.е. потенциально очень мощные импакторы), которые мы можем сегодня заметить за не более, чем 2-3 года до столкновения. Однако, фактически, впервые за последние три века, с тех пор, как родилась идея столкновения Земли с небесным телом, через несколько лет мы будем иметь базу данных траекторий подавляющего количества несущих Земле опасных тел.

Как спастись?

Прежде чем поговорить о методах отклонения потенциальных импакторов, необходимо еще раз посмотреть на ситуацию с тем, какие из малых тел Солнечной системы представляют опастность. Для начала разобьем все малые тела, вращающиеся вокруг Солнца, на группы по орбитальным параметрам и выделим из них несколько групп - Околоземные Астероиды, Астероиды главного пояса, Кентавры, объекты пояса Койпера.


Крупнейший из потенциально опасных околоземных астероидов - 4179 Таутатис

Орбиту Земли в 99,5% случаев пересекают околоземные астероиды, орбита которых лежит где-то между поясом астероидов и внутренней частью Солнечной системы (очевидно, внутри орбиты Земли). Однако количественно это одна из самых малочисленных групп астероидов. Так, на сегодня известно около 15000 околоземных астероидов и более 800000 астероидов главного пояса. Однако орбиты астероидов главного пояса стабилизируются Юпитером и Ураном, и только в результате довольно редких столкновений достаточно большие обломки могут перейти на опасные орбиты. Поэтому, несмотря на большую численность, астероиды главного пояса не представляют значительной опасности Земле.

Следующим по значимости источником опасных тел является группа Кентавров - внутренняя часть пояса Койпера, расположенная между орбитами Юпитера и Нептуна. Это динамически нестабильная территория, из которой малые тела во взаимодействии с планетами-гигантами рано или поздно расшвыривает внутрь или наружу Солнечной Системы, и именно Кентавры являются основным источником короткопериодических комет. Эта группа тел, гораздо более сложная для обнаружения, чем астероиды главного пояса или тем более околоземные, является источником почти 0,5% пересечений малыми телами орбиты Земли (речь идет о тех Кентаврианцах, перигелий которых сдвинулся внутрь орбиты Земли, а афелий остался где-то возле орбиты Юпитера, в случае если афелий тоже сдвигается внутрь Сол. Системы, то объект переходит в группу околоземных астероидов).

Различные группы внешних астероидов. Светло-коричневыми являются объекты Рассеянного диска, Синие - пояса Койпера. Светло- и темнозеленые - Кентавры, серые - Троянцы. Красные точки - Юпитер, Сатурн, Уран, Нептун, желтый круг, хотя и соотвествует Солнцу, примерно в 1,5 раза больше, чем орбита Земли. Можно понять, что астероиду из внешних частей Солнечной системы сложно попасть в Землю, которая в 10000 раз меньше диаметра своей орбиты.

Наконец, внешние части Солнечной Системы - пояс Койпера, рассеянный диск и облако Оорта тоже периодически присылают “подарки” к центру, называемые долгопериодическими кометами (их определяют, как кометы с периодом обращения более 200 лет). Однако, несмотря на гигантские оценки общего количества тел в этих группах, орбитальная динамика и низкие скорости приводят к тому, что во внутрь Земной орбиты каждый год залетает не более 3 подобных объекта с потенциально опасными размерами - фактически, на фоне тысяч пересечений орбиты околоземными астероидами вероятность получить столкновение с такой кометой составляет около 0,1% . Однако к объектам из пояса Койпера и облака Оорта мы еще вернемся, а сейчас поговорим про методы отклонения нового “стандартного” астероида..

После того, как астрономы “отфильтровали” все околоземные объекты размером >1 км (на сегодня на пересекающихся с Землей орбитах известно 157 тел размером более 1 км, и это число уже несколько лет практически не растет), стандартной мишенью, на которых стали тренировать свою мысль изобретатели различных способов отклонения астероидов стал нашумевший Апофис - наибольшая из вероятных по размерам и орбите мишень, которую скорее всего найдут рано или поздно астрономы.

В настоящее время придумано несколько десятков способов изменения орбиты астероидов. Давайте перечислим наиболее проработанные из них в порядке возрастания эффективности. Эффективность будем определять, как массу космического аппарата, который осуществляет отклонение астероида в точке нужного отклонения (минимум ~20000 км).

    Химические ракетные двигатели, установленные на астероиде. Из плюсов только то, что они есть под рукой и хорошо известны. Для придания минимального импульса (обычно он оценивается в ~0,3 м/с) 10-50 миллионам тонн астероида нужно доставить несколько десятков тысяч тонн топлива - что означает подъем на низкую орбиту земли уже сотен тысяч тонн. В целом у этого варианта нет каких-либо плюсов, нивелирующих такие запредельные затраты.

    Электрореактивные двигатели, также установленные на астероиде. С одной стороны, масса топлива может быть порядка десятков тонн, т.к. удельным импульс ЭРД настраивается. С другой стороны - есть серьезный минус в виде вращения астероидой - выдавать импульс в нужном направлении двигатели смогут малую часть времени. Обычно наряду с импульсным воздействием рассматривают еще варианты предварительной остановки вращения астероида или прецессии оси вращения так, чтобы она совпала с направлением, куда выдается тяга (т.е. ДУ переместиться на полюс при этом, точнее полюс на ДУ). В целом, если у нас есть много десятков лет, то это самый реалистичный вариант - технологии более менее готовы.

    Результат моделирования применения космического аппарата с ЭРД к потенциальному Апофису. По одной оси отложено время с момента обнаружения, причем первые 1000 дней - создание, запуск и полет к астероиду, а дальше идет время воздействия. По другой оси - доступная масса аппарата в десятках тонн. По третьей - достигнутое отклонение астероида от начальной траектории.

    Однако есть довольно интересное переиначивание данного решения, называемое “гравитационный буксир”. Здесь мы не устанавливаем двигательную установку с баками на поверхности, а подвешиваем недалеко от астероида, не давая ей притянуться к астероиду тягой двигателей. Взаимное притяжение постепенно стаскивает камень с орбиты (да-да!), выполняя нужную нам работу. Самое главное тут - не давать струям из двигателей ударять в астероид, необходимо расположить нашу ДУ под углами к линии соединяющей КА и астероид. В целом эффективность на килограмм пониже, чем у решения №2, но зато нас не волнует вращение космического тела - и работа выполняется 24х7, поэтому таким образом можно сократить время, за которое тело будет уведено с опасной траектории.

    Аналогичное моделирование для гравитационного буксира.

    Ударное воздействие. Просто разогнанная болванка на скорости несколько км/с врезается в астероид, придавая ему импульс. Всем хорошее решение (и уже один раз реализованное в учебно-тренировочных целях на комете Темпель в 2005 году), кроме как низкой эффективности. Если взять все тот же многострадальный Апофис, то космический аппарат массой 100 тонн, правильно загнанный в него аж за 20 лет до столкновения (напомню, что изначально у НАСА было 25 лет от обнаружения до возможного столкновения, которое потом стало невозможным) вызвал бы его отклонение всего на 12000 км. Хотя это равно диаметру Земли, т.е. вроде бы заведомо достаточно, такие точности где-то на грани погрешностей измерения и моделирования, т.е. хотелось бы иметь возможность увода тела на 20-30-40 тысяч км.

    Моделирование для ударного космического аппарата.

    Следующая идея имеет гораздо меньшую проработанность, но весьма красива. Располагаем рядом с удаляемым астероидом фокусирующее зеркало, которое нагревает точку на поверхности до, скажем, 1600С - при этом даже оливин, из которого в основном состоят S и C астероиды, начинает интенсивно испаряться в вакуум, создавая тягу. Принципиальной проблемой может быть только быстрое вращение астероида - если пятно не будет успевать прогреваться, то и тяги мы не получим. Тем не менее технических проблем здесь вагон: необходимо точно удерживать зеркало в нужном положении, перефокусировать наш луч на разные расстояния (т.к.астероид не идеальная сфера, а бугристый камень), в конце концов надувные зеркала диаметром 50...100 метров с оптическим качеством поверхности никто не выводил в космос. Но теоретическая эффективность такого способа весьма высока, она выше, чем у ядерной бомбардировки(!).

    Моделирование для солнечного концентратора. "Плато" здесь - превышение дистанции отклонения опасного объекта за пределы орбиты луны, после чего моделирование останавливалось. Видно, что при одной и той же массе аппарата в ~10 тонн он способен справлятся с весьма немаленькими астероидами.

    Еще более теоретической является идея “масс-драйвера” - электромагнитной катапульты, кидающей куски астероида, и таким образом придающей ему импульс в нужном направлении. На первый взгляд хорошая идея, так же обходящаяся без привезенной с Земли реактивной массы, однако, очевидно, требующая большого количества разнообразных машин, работающих на астероиде - сама катапульта, “роботы-шахтеры”, завод, изготавливающий снаряды, ремонт всего этого. На сегодня не существует даже прототипов подобной техники, впрочем ее разработка не помешает, даже если астероиды таким способом никогда отклонять не понадобится.

    Моделирование для катапульты - видно, что эффективность этой схемы быстро падает с уменьшением массы космического аппарата, но тем не мене является весьма высокой.

    Впрочем, если мы хотим минимизировать не только реактивную массу, но и машинерию, то есть вариант передвижения астероидов за счет YORP-эффекта. Грубо, речь идет о том, что вращающийся камень с одной стороны нагрет, а с другой холодный, поэтому возникает асимметрия тяги за счет своеобразного “фотонного двигателя” на ИК-фотонах. Этот эффект невелик, однако за счет раскраски астероида отражающей и поглощающей краской можно добиться смещения на тысячи и десятки тысяч километров за десятилетия. Но только для небольших астероидов, размером не выше 150 м, т.к. для YORP-эффекта важно соотношение площади к объему. Подсчитано, что для опасного астероида размером ~100 метров нужно всего 2-3 тонны краски двух цветов, т.е. такой космический аппарат-маляр скорее всего получится запустить имеющимися носителями.


    Пояснение одной из основных частей YORP - эффекта Ярковского, вызывающего смещение орбиты.

    Подбираемся к тематике блога - надповерхностный ядерный взрыв. Плотность энергии в ядерном боеприпасе позволяет творить чудеса и передавать в одно мгновение весьма приличный импульс. Ядерные боеголовки, особенно против тел диаметром меньше 1 километра, дают эффект даже если времени до возможного столкновения с Землей осталось немного. Однако, интересно, что результат заметно зависит от высоты подрыва над поверхностью, и каналов выхода энергии из ядерного взрывного устройства. Если предположить, что боеголовка имеет параметры ББ МБР Р-36М, т.е. мощность 750 кт и вес 600 кг, то передаваемый импульс астероиду Апофис составит ~0,3 м/с при оптимальной высоте подрыва 48 метров. Значит, на расстояние 20000 км после этого астероид уйдет за ~2 года. Удивительно, но заметная часть импульса передается путем прогрева и сублимации поверхности нейтронным излучением - рентген поглощается в слишком тонком слое от поверхности, и скорее перегревает его, а вот нейтроны оказываются оптимальными. Т.е. сразу виден путь оптимизации - двухступенчатые термоядерные боеголовки максимальной массы, которую технически возможно отправить к астероиду, в предельном варианте - с дейтерий-тритиевым топливом, а не дейтерий-литиевым (которое дает гораздо меньше нейтронов).

    Аналогичное моделирование для ядерной бомбардировки.

    Наконец, последний отобранный вариант - заглубленный ядерный взрыв. Если раньше под этим понимали бурение на астероиде некой скважины, куда закладывается заряд, то сейчас моделирование показывает, что расположение ЯБ внутри импактора, влетающего в тело на скорости в несколько км/с и подрыв буквально в нескольких метрах ниже поверхности в кратере обеспечивает примерно тот же импульс. В этот раз он обеспечивается массой обломков со средней скоростью ~80-100 м/с, что означает гораздо более высокое использование энергии ядерного заряда - отогнать астероид массой с многострадальный Апофис (надеюсь, на Апофисе никто не читает профильную литературу по защите от астероидов) на расстояние 20000 км от точки прицеливания в Землю теперь можно за 10-15 дней(!). В настоящее время подобный вариант является ультимативным, в том числе обеспечивающим возможное спасение от долгопериодических комет. Напомню, что что такие кометы, хоть и очень маловероятные кандидаты на Апокалипсис, необнаружимы раньше чем за 9-12 месяцев до даты импакта, хотя обзорный телескоп диаметром метров 12-15 или космического базирования мог бы заметно расширить этот срок.

    Небольшой сферический астероид в вакууме и начальные стадии взрыва импактора мощностью 50 кт. Через 30 миллисекунд от камня останутся рожки да ножки.

Необходимо, правда, вспомнить и пару минусов заглубленного ядерного взрыва. Прежде всего это зависимость импульса действия взрыва от внутренней структуры тела, некое количество обломков, все равно попадающее на землю (впрочем, тела размером меньше 10 метров, как мы знаем, практически полностью безопасны - вряд ли в результате взрыва будут появляться фрагменты больше этого размера), ну и традиционная слабая проработанность подобных космических аппаратов, хотя тут как посмотреть - у военных похоже есть ядерные перентраторы, которые заглубляются в грунт на скорости в несколько км/с (помните испытание такого с разгоном на ракетной тележке на рельсовом пути до 2 км/с?).

Расчетное выпадение обломков (неясного размера) при отклонении Апофиса заглубляемым ядерным пенетратором за 20 дней до столкновения.

Еще, одним, довольно фатальным минусом ядерного оружия для отражения астероидной угрозы, является множество политических и безопасностных ограничений по использованию ядерного оружия в космосе. Пока существуют только механизмы противодействия запуску ядерной бомбы к астероиду, и не существует механизмов по быстрому воплощению этой задачи в жизнь. А если время не важно - то как мы видим, есть методы и не хуже, и где-то интереснее.


Металлический астероид Психея в представлении художника.

Пока же деньги получают только телескопы и исследовательские миссии к астероидам - на сегодня на орбите находятся посетивший Цереру и Весту Dawn, китайский аппарат Чаньэ-2, совершивший пролет астероида 4179 Таутатис, программы по возврату образцов с астероидов “Хаябуса-2 ” к 162173 Рюгу (тоже потенциально опасный объект) и OSIRIS-REx к 101955 Бенну (еще один крупнейший из потенциально опасных для Земли астероидов - замечаете тенденцию?). Буквально на днях НАСА выбрала для финансирования также орбитер к одному из крупнейших астероидов главного пояса 16 Психея (его особенность в том, что он практически полностью состоит из металла - железа, никеля и кобальта, при весе в несколько сот миллиардов тонн) и миссию пролета 6 астероидов из Троянцев - тел запертых в точках Лагранжа на орбите Юпитера.

P.S. Существует довольно забавный симулятор импактов, позволяющий рассчитать последствия от столкновений Земли с астероидами. Не очень наглядный (выводы текстом), но весьма подробный в плане последствий.

А это совсем свежее видео из под Архангельска:

Национальное управление по аэронавтике и исследованию космического пространства (NASA) США анонсировало испытание технологии, которая поможет спасти Землю от столкновения со смертоносными астероидами. Очень хорошая идея, которая в будущем спасет все человечество, заявил корреспонденту Федерального агентства новостей научный обозреватель телеканала «Культура» Александр Галкин .

Необходимость

В пресс-релизе, выпущенном специалистами NASA, сообщается, что речь идет о новейшей системе планетарной обороны, которая, как предполагается, должна отклонять от Земли опасные космические объекты с помощью кинетического удара.

«DART будет первой миссией NASA, которая продемонстрирует так называемую технологию кинетического удара», - заявила офицер планетарной обороны в штаб-квартире NASA в Вашингтоне Линли Джонсон .

Сотрудники американского космического агентства намерены испытать свою систему на небольшом околоземном астероиде Дидим, который будет пролетать мимо Земли в октябре 2022 года и в 2024 году. Данные об отклонении траектории спутника будут получены и обработаны на Земле с тем, чтобы в будущем стало возможным отклонять траектории астероидов от нашей планеты

«Здесь речь идет о потенциальных убийцах всего человечества - достаточно больших астероидах, которые движутся в сторону Земли и могут на нее упасть. Система планетарной обороны нам необходима для того, чтобы избежать повторения сценария, когда 65 миллионов лет назад в районе полуострова Юкатан упал астероид диаметром в 10 километров. Он создал самый большой ударный кратер на поверхности Земли и вызвал катастрофические климатические изменения, которые уничтожили динозавров», - поясняет ситуацию Галкин.

Техническая сторона

По мнению собеседника ФАН, предложенная американским аэрокосмическим агентством технология, отвечает всем необходимым на сегодняшний день требованиям по безопасности.

«Дело в том, что очень большие астероиды не расколоть из-за их плотной и крепкой внутренней структуры. Вряд ли найдется заряд достаточной мощности, поэтому и предлагается технология кинетического удара, которая могла бы сдвинуть «космического скитальца» буквально на миллиметр, меняя его траекторию. Ведь если сдвинуть астероид на пару градусов в миллионах километров от Земли, то в результате разбегания разница у нашей планеты будет составлять уже 30-40 градусов и космическое тело пролетит мимо. В этом есть смысл. Ну, а если говорить о полном разрушении космического тела, то это будет возможно только с небольшими болидами», - утверждает Галкин.

Кроме того, российский эксперт напоминает, что ядерное оружие для этих целей пока тоже опасно использовать, так как современные аэрокосмические технологии не позволяют со стопроцентной вероятность обеспечить успешный запуск ракеты с ядерном боевым блоком.

«Отправлять в космос атомную бомбу страшно, потому что 100% гарантии безопасного запуска нет. Все равно есть небольшой процент того, что ракета не выйдет в космос, взорвется при старте или во время подъема. И если что-то подобное произойдет, то все мы понимаем, какими катастрофичными будут последствия для природы и человека. Кстати, в СССР разрабатывался подобный проект, но от него решили отказаться как раз по этой причине - опасно для самого человечества», - заключает научный обозреватель.

Напомним, ранее специалисты российской государственной корпорации Роскосмос заявляли, что трудятся над проектом по определению и обнаружению опасных астероидов и комет, которые двигаются навстречу Земле. Разработки ученых станут основой для будущей опытно-конструкторской работы, которая будет проходить конкурсный отбор совета РАН по космосу и госкорпорации. Однако данный проект пока не входит в состав Федеральной космической программы до 2025 года.

В ЦНИИмаш рассказали, что система отслеживания потенциальных угроз в околоземном пространстве будет отслеживать действующие космические аппараты и космический мусор. Она также будет предупреждать о возможных столкновениях на орбите. Эта же система будет вести наблюдение за астероидами и кометами.

Если Земля окажется на пути гигантского астероида, сможем ли мы спасти нашу планету? И как? Мы приводим мнение трех ученых о том, что мы реально можем сделать.

Земля постоянно бомбардируется из космоса. В большинстве случаев речь идет о пыли или маленьких камешках, которые сгорают в атмосфере прежде, чем достигнут поверхности Земли. Мы их замечаем в лучшем случае как красивые звезды, падающие с ночных небес. Но иногда появляется и кое-что покрупнее.

И что мы тогда делаем? Есть ли у нас какой-то план? На это очень хочет знать ответ наш читатель Силас Кристенсен (Silas Kristensen), и мы его хорошо понимаем.

«Что случится, если астероид возьмет курс на Землю? Что будут делать правительства, и как мы сможем остановить его? Есть ли у нас группа ученых под названием „Защитники Земли", в задачу которых входит спасти Землю, если она окажется в опасности?» — написал он в нашу рубрику «Задай вопрос».

Ответ на вопрос Силаса, касается, скажем так, многих, поэтому мы сразу же обратились к ученым, работающим в этой области, чтобы получить представление о том, насколько мы на самом деле подготовлены.

Поскольку сам вопрос состоит из нескольких более мелких вопросов, ответ в статье также разделен на несколько частей:

Сначала мы поймем, что случилось бы, если бы мы узнали, что какой-то астероид взял курс на Землю прямо сейчас.

Затем, мы выясним, что правительства и ученые чисто практически предпримут каждый в своих областях.

Наконец, мы посмотрим, какие варианты имеются у нас в запасе, если инцидент все-таки неизбежен.

Ответ на первый вопрос, к сожалению, гласит, что на сегодняшний день мы, вероятнее всего, не сможем предотвратить столкновение.

«Прямо сейчас, мы вообще ничего не смогли бы сделать», — сообщает заслуженный доцент кафедры физики в Институте имени Нильса Бора Мальте Ульсен (Malte Olsen).

«Проблема в том, что даже если мы обнаружим это, что же мы можем сделать? Чтобы построить ракету для такой миссии, нам понадобятся годы, а на сегодняшний день обычно мы не можем предсказать то, что вблизи Земли пройдет астероид, раньше, чем за несколько недель».

Скорость реакции и есть основная проблема на сегодня, так считает и Микаель Линден-Вёрнле (Michael Linden-Vørnle), астрофизик и ведущий консультант в Институте космических исследований DTU Space.

«Заблаговременное предупреждение — это ключевой момент. Если будет достаточно времени, то у нас будет шанс, у нас есть основные технологии, которых должно хватить для решения проблемы. Но это не имеет никакого значения, если мы просто не будем подготовлены», — говорит он.

К счастью, необходимая работа уже ведется, рассказала доктор астрономических наук Лине Друбе (Line Drube), которая изучает астероиды в Институте планетарных исследований в Берлине.

Она сама участвует в нескольких совместных международных проектах, которые направлены именно на разработку плана действий в случае приближения опасных астероидов, которые в среде ученых называются «Околоземные объекты» (Near Earth Objects — NEOs).

«Все началось с проекта NEOSHIELD 1, когда Еврокомиссия впервые заявила, что нам нужен план на случай угрозы столкновения с астероидами. Сейчас мы занимаемся продолжением проекта, программой NEOSHIELD 2. Наша группа состоит из ученых, инженеров и других экспертов, которые тщательно изучают и сопоставляют астероиды и ищут пути предотвращения столкновений», — рассказывает она.

Кроме того, параллельно и непрерывно идет совместная работа стран-членов ООН в рамках Консультативной группы по планированию космических миссий (Space Mission Planning Advisory Group — SMPAG). В ней датчанка Лине Друбе тоже принимает участие.

«Смысл в том, что ученые всего мира общими усилиями могут оценивать риски и давать рекомендации, которые отправляются дальше в ООН и на основании которых потом в итоге будет принято решение, что нужно делать», — рассказывает она.

Так что по факту у нас есть группа ученых «Защитники Земли», которую разыскивал наш читатель Силас Кристенсен, и она ведет работу по розыску, исследованию и наблюдению за астероидами, а также поиску путей решения проблемы, в случае, если они возьмут курс на нас.

Так как трудно определить траекторию астероида абсолютно точно, группа ученых работает над различными сценариями рисков и вариантов временных рамок, рассказала Лине Друбе.

«Мы пытаемся обозначить схему, когда и что мы будем делать. Если, например, до столкновения с астероидом осталось пять лет, какие методы мы используем в таком случае? Очень большая разница, когда есть информация, что он ударит в Землю через тридцать лет или же через пять лет. Если у нас есть тридцать лет, мы можем предпринять гораздо больше и спокойно найти хорошее решение, но если осталось всего пять лет, план должен быть готов тотчас же».

«Это послужит стимулом. За последние 10 лет люди стали осознавать, какую угрозу представляют собой астероиды. Поэтому я думаю, что мы сможем все создать, протестировать и спланировать действия, мы справимся».

Микаель Линден-Вёрнле также считает стратегию Белого дома позитивной мерой, хотя она по существу только представляет список проблем и задач, которые надо решить.

«Эта стратегия по сути очень общая, и теперь она должна быть дополнена конкретным планом действий и мер. Но как точка отсчета она служит признанием того, что нужно что-то предпринимать и что эта проблема должна восприниматься всерьез, а это, конечно, очень позитивно».

Международное сотрудничество направлено в особенности на обнаружение астероидов, которые могут приблизиться к Земле, рассказывает Микаель Линден-Вёрнле.

«Цель состоит в том, чтобы зафиксировать как минимум 90% астероидов, чьи размеры превышают 140 метров. Совсем большие довольно легко контролировать, ведь их просто легче увидеть, но те, что поменьше, очень трудно обнаружить», — говорит он.

Многие наверняка помнят фото и видео, снятые в России в 2013 году, когда 20-метровый астероид взорвался над городом Челябинском. Вспышка была видна на 100 километров вокруг, более 1 000 человек пострадали из-за взрывной волны.

«Он появился среди бела дня, когда небо, естественно, было светлым, а еще невероятно трудно заметить такой маленький объект, движущийся при этом со скоростью 66 000 километров в час. Его просто не могли зафиксировать», — объясняет Лине Друбе.

«Поэтому мы не можем рассчитывать на то, что предскажем появление абсолютно всех небольших, но все-таки потенциально смертельно опасных для нас угроз», — рассказывает Микаель Линден-Вёрнле.

«Что касается астероидов поменьше, часто нам ничего особенно и не остается, кроме как поднять голову и надеяться на лучшее», — говорит он.

«К счастью, ученые определили орбиты большей части самых крупных астероидов, называемых „global killers", потому что считается, что они могут причинить глобальный вред планете», — рассказывает Лине Драубе.

Но на случай, если все-таки вдруг сейчас с голубых небес нам начнет угрожать «убийца мира», у ученых в запасе уже разработан целый ряд различных анти-астероидных проектов.

И да, в их число входит также метод Брюса Уиллиса, предполагающий взрыв атомной бомбы на астероиде, как это было сделано в фильме «Армагеддон».

«Но это был бы, вероятно, самый крайний случай, ведь использование атомного оружия с политической точки зрения вообще очень сложный вопрос. Так что об этом речь могла зайти только в случае очень большого астероида, и только если бы оставалось очень мало времени до удара», — объясняет Лине Драубе.

Кроме того, этот вариант может породить больше проблем, чем решит, считает Мальте Ульсон.

«Если вы взорвете атомную бомбу на астероиде, это, весьма вероятно, закончится тем, что вместо крупного появятся 10 000 более мелких астероидов, которые постоянно будут представлять собой угрозу и чью траекторию будет еще сложнее вычислить. Так что это будет что-то вроде модифицированного самоубийства».

В общем и целом есть два подхода к проблеме, рассказывает Микаель Линден-Вёрнле:

«Вы можете либо уничтожить объект, либо изменить его траекторию».

На сегодняшний день есть следующие два предложения, которые представляются реальными, рассказывают трое нашиих ученых.

С большой скоростью запустить космический корабль прямо в астероид и тем самым сбить его с траектории, направленной на Землю. Этот метод был описан, например, в проекте НАСА Deep Impact и космическом проекте AIDA, состоящем из двух программ DART и AIM, совместной работе агентств ЕКА и НАСА. Проекту AIDA, однако, было отказано в дальнейшем финансировании, а ученые сейчас работают над похожим, но более дешевым вариантом миссии.

Запустить тяжелый космический корабль с большой массой и разместить его около астероида, чтобы тот в течение некоторого времени утаскивал астероид с его траектории за счет гравитационного воздействия. Но это может сработать только для небольших астероидов и если в запасе есть много времени. Этот проект НАСА называется еще «Гравитационный трактор».

Запустить ионную пушку рядом с астероидом, чтобы та обстреливала «булыжник» излучением и со временем заставила его изменить исходную траекторию. Этот проект ЕКА называется Ion Beam Shepherd и его, кроме того, возможно, будут использовать, чтобы двигать космический мусор.

Кроме того, Мальте Ульсон и Микаель Линден-Вёрнле упоминают также вариант, который основан на так называемом эффекте Жарковского. Лине Друбе, однако, не относит его к серьёзным решениям и называет «идиотским методом».

Тем не менее, он основан на следующем принципе.

Можно использовать так называемый эффект Жарковского, который в том числе исследовался и в рамках проекта НАСА OSIRIS Rex. Эффект возникает, когда вращающийся астероид нагревается на Солнце. Когда теплая сторона оказывается в тени, она испускает тепловое излучение, что срабатывает как двигатель и изменяет траекторию астероида. Если, например, покрасить одну сторону астероида в белый цвет, можно будет повлиять на траекторию, так как отражательная способность окрашенной стороны, а значит, и ее нагреваемость, изменится. Во всяком случае, в теории.

Но ни один из этих методов не относится к числу будничных дел, которыми мы сто раз занимались, говорит Микаель Линден-Вёрнле.

«В принципе, это может сработать, но теория и практика — это совсем разные вещи. Нам нужно построить системы устройств, протестировать их, а потом и запустить. Будет ли все это функционировать эффективно, окажется ли в нужном месте — будет ясно только когда наступит решающий день», — говорит он.

«В отличие от землетрясений, здесь и в самом деле реально что-то сделать»

«Хотя задача следить за летающими каменными глыбами всей Солнечной системы, а в один прекрасный день взлететь и изменить их траекторию или взорвать, может показаться невыполнимой, другой альтернативы у нас фактически нет», — рассказывает Лине Драубе.

Зато в отличие от других природных катастроф, вроде землетрясений, здесь и в самом деле реально что-то сделать, и это, считает она, нас кое к чему обязывает:

«Если однажды придет известие, что к нам летит астероид, я уверена, люди хотели бы знать, что у нас есть какой-то готовый план, который может всех спасти».

Так что Силас Кристенсен должен удовлетвориться в этот раз таким неоднозначным ответом. У нас нет еще готового плана, но мы, к счастью, уже работаем над ним.