Максимальная потенциальная энергия пружинного маятника. Свободные колебания. Пружинный маятник. Энергия гармонических колебаний

), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так:

, где f(x) - это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания , пропорционального скорости колебаний с коэффициентом c :

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пружинный маятник" в других словарях:

    У этого термина существуют и другие значения, см. Маятник (значения). Колебания маятника: стрелками показаны векторы скорости (v) и ускорения (a) … Википедия

    Маятник - устройство, которое, колеблясь, упорядочивает движение механизма часов. Пружинный маятник. Регулирующая деталь часов, состоящая из маятника и его пружины. До изобретения маятниковой пружины, часы приводились в движение одним маятником.… … Словарь часов

    МАЯТНИК - (1) математический (или простой) (рис. 6) тело небольших размеров, свободно подвешенное к неподвижной точке на нерастяжимой нити (или стержне), масса которой пренебрежимо мала по сравнению с массой тела, совершающего гармонические (см.)… … Большая политехническая энциклопедия

    Твёрдое тело, совершающее под действием прилож. сил колебания ок. неподвижной точки или оси. Математическим М. наз. материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающая под действием силы… … Большой энциклопедический политехнический словарь

    Часы с пружинным маятником - пружинный маятник регулирующая часть часов, также используется в часах средних и маленьких размеров (переносные часы, настольные, и т.д.) … Словарь часов - маленькая спиральная пружина, прикрепленная концами к маятнику и его молоточку. Пружинный маятник регулирует часы, точность которых частично зависит от качества маятниковой пружины … Словарь часов

    ГОСТ Р 52334-2005: Гравиразведка. Термины и определения - Терминология ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа: (гравиметрическая) съемка Гравиметрическая съемка, проводимая на суше. Определения термина из разных документов: (гравиметрическая) съемка 95… … Словарь-справочник терминов нормативно-технической документации

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$

Исследование колебаний маятника проводится на установке, схема которой приведена на рис.5. Установка состоит из пружинного маятника, системы регистрации колебаний на основе пьезоэлектрического датчика, системы возбуждения вынужденных колебаний, а также системы обработки информации на персональном компьютере. Исследуемый пружинный маятник состоит из стальной пружины с коэффициентом жесткости k и тела маятника m , в центре которого вмонтирован постоянный магнит. Движение маятника происходит в жидкости и при небольших скоростях колебаний возникающая сила трения может быть с достаточной точностью аппроксимирована линейным законом, т.е.

Рис.5 Блок-схема экспериментальной установки

Для увеличения силы сопротивления при движении в жидкости, тело маятника изготовлено в виде шайбы с отверстиями. Для регистрации колебаний используется пьезоэлектрический датчик, к которому подвешена пружина маятника. Во время движения маятника сила упругости пропорциональна смещению х ,
Так как ЭДС, возникающая в пьезодатчике в свою очередь пропорциональна силе давления, то сигнал, получаемый с датчика будет пропорционален смещению тела маятника от положения равновесия.
Возбуждение колебаний осуществляется с помощью магнитного поля. Гармонический сигнал, создаваемый ПК усиливается и подается на катушку возбуждения, расположенную под телом маятника. В резултате этого катушки образуется переменное во времени и неоднородное в пространстве магнитное поле. Это поле действует на постоянный магнит, вмонтированный в тело маятника и создает внешнюю периодическую силу. При движении тела вынуждающую силу можно представить в виде суперпозиции гармонических функций , и колебания маятника будут являться суперпозицией колебаний с частотами mw. Однако заметное влияние на движение маятника будет оказывать лишь составляющая силы на частоте w , так как она наиболее близка к резонансной частоте. Поэтому амплитуды составляющих колебаний маятника на частотах mw будут малы. То есть в случае произвольного периодического воздействия колебания с большой степенью точности можно считать гармоническими на частоте w .
Система обработки информации состоит из аналого-цифрового преобразователя и персонального компьютера. Аналоговый сигнал с пьезоэлектрического датчика с помощью аналоге-цифрового преобразователя представляется в цифровом виде и подается на персональном компьютере.

Управление экспериментальной установкой с помощью ЭВМ
После включения компьютера и загрузки программы на экране мо- нитора появляется основное меню, общий вид которого показан на рис.5. Используя клавиши управления курсором , , , , можно выбрать один из пунктов меню. После нажатия кнопки ENTER компьютер приступает к выполнению выбранного режима работы. Простейшие подсказки по выбранному режиму работы содержатся в выделенной строке внизу экрана.
Рассмотрим возможные режимы работы программы:

Статика - этот пункт меню используется для обработки результатов первого упражнения (см. рис.5) После нажатия на кнопку ENTER компьютер запрашивает массу груза маятника. После следующего нажатия кнопки ENTER на экране появляется новая картинка с мигающим курсором. Последовательно записывают на экране массу груза в граммах и, после нажатия пробела, величину растяжения пружины. Нажав на ENTER переходят на новую строку и снова записывают массу груза и величину растяжения пружины. Допускается редактирование данных в пределах последней строки. Для этого нажав клавишу Backspase удаляют неправильное значение массы или растяжения пружины и записывают новое значение. Для изменения данных в других строках необходимо последовательно нажать Esc и ENTER , а затем повторить набор результатов.
После набора данных нажимают на функциональную клавишу F2 . На экране появляются расчитанные с помощью метода наименьших квадратов значения коэффициента жесткости пружины и частоты свободных колебаний маятника. После нажатия на ENTER на экране монитора появляется график зависимости упругой силы от величины расрастяжения пружины. Возврат в основное меню происходит после нажатия любой клавиши.
Эксперимент - этот пункт имеет несколько подпунктов (рис.6). Рассмотрим особенности работы каждого из них.
Частота - в этом режиме с помощью клавиш управления курсором осуществляется задание частоты вынуждающей силы. В том случае, если проводится эксперимент со свободными колебаниями, то необходимо установить значение частоты равное 0 .
Старт - в этом режиме после нажатия кнопки ENTER программа начинает снимать экспериментальную зависимость отклонения маятника от времени. В том случае, когда частота вынуждающей силы равна нулю, на экране появляется картина затухающих колебаний. В отдельном окошке записываются значения частоты колебаний и постоянной затухания. Если частота возбуждающей силы не равна нулю, то наряду с графиками зависимостей отклонения маятника и вынуждающей силы от времени на экране в отдельных окошках записываются значения частоты вынуждающей силы и ее амплитуды, а также измеренных частоты и амплитуды колебаний маятника. Нажав на клавишу Esc можно выйти в основное меню.
Сохранить - если результат эксперимента удовлетворителен, то его можно сохранить, нажав на соответствующую клавишу меню.
Нов. Серия - этот пункт меню используется в том случае, если возникла необходимость отказаться от данных текущего эксперимента. После нажатия клавиши ENTER в этом режиме из памяти машины стираются результаты всех предыдущих экспериментов, и можно начать новую серию измерений.
После проведения эксперимента переходят в режим Измерения . Этот пункт меню имеет несколько подпунктов (рис.7)
График АЧХ - этот пункт меню используется после окончания эксперимента по изучению вынужденных колебаний. На экране монитора строится амллитудно-частотная характеристика вынужденных колебаний.
График ФЧХ - В этом режиме после окончания эксперимента по изучению вынужденных колебаний на экране монитора строится фазочастотная характеристика.
Таблица - этот пункт меню позволяет выдать на экран монитора значения амплитуды и фазы колебаний в зависимости от частоты вынуждающей силы. Эти данные переписываются в тетрадь для отчета по данной работе.
Пункт меню компьютера Выход - окончание работы программы (см. например, рис. 7)

Упражнение 1. Определение коэффициента жесткости пружины статическим методом.

Измерения проводятся путем определения удлинения пружины под действием грузов с известными массами. Рекомендуется провести не менее 7-10 измерений удлинения пружины постепенно подвешивая грузы и изменяя тем самым нагрузку от 20 до 150 г. Используя пункт меню работы программы Статистика результаты этих измерений заносят в память компьютера и определяют коэффициент жесткости пружины используя метод наименьших квадратов. В ходе выполнения упражнения необходимо расчитать значение собственной частоты колебаний маятника

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью . Различают два наиболее простых случая: горизонтальный (рис.15,а ) и вертикальный (рис.15, б ) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза
из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила
(закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз
при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б ). Положение равновесия в этом случае характеризуется условием:

где - величина упругой силы, действующей на груз
при статическом растяжении пружины на под действием силы тяжести груза
.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет
, то сила упругости запишется теперь как
.

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука
(она получила название квазиупругой силы ), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения
(не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой
, т.е.
(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна
. При прохождении положения равновесия (
) потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как
.

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.

(1.7.1)

Если сместить шарик от положения равновесия на расстояние х, то удлинение пружины станет равным Δl 0 + х. Тогда результирующая сила примет значение:

Учитывая условие равновесия (1.7.1), получим:

Знак "минус" показывает, что смещение и сила имеют противоположные направления.

Упругая сила f обладает следующими свойствами:

  1. Она пропорциональна смещению шарика из положения равновесия;
  2. Она всегда направлена к положению равновесия.

Для того, чтобы сообщить системе смещение х, нужно совершить против упругой силы работу:

Эта работа идет на создание запаса потенциальной энергии системы:

Под действием упругой силы шарик будет двигаться к положению равновесия со все возрастающей скоростью . Поэтому потенциальная энергия системы будет убывать, зато возрастает кинетическая энергия (массой пружины пренебрегаем). Придя в положение равновесия, шарик будет продолжать двигаться по инерции. Это - замедленное движение и прекратится тогда, когда кинетическая энергия полностью перейдет в потенциальную. Затем такой же процесс будет протекать при движении шарика в обратном направлении. Если трение в системе отсутствует, шарик будет колебаться неограниченно долго.

Уравнение второго закона Ньютона в этом случае имеет вид:

Преобразуем уравнение так:

Вводя обозначение , получим линейное однородное дифференциальное уравнение второго порядка:

Прямой подстановкой легко убедиться, что общее решение уравнения (1.7.8) имеет вид:

где а - амплитуда и φ - начальная фаза колебания - постоянные величины. Следовательно, колебание пружинного маятника является гармоническим (Рис. 1.7.2).


Рис. 1.7.2. Гармоническое колебание


Вследствие периодичности косинуса различные состояния колебательной системы повторяются через определенный промежуток времени (период колебаний) Т, за который фаза колебания получает приращение 2π. Рассчитать период можно с помощью равенства:

откуда следует:

Число колебаний в единицу времени называется частотой:

За единицу частоты принимается частота такого колебания, период которого равен 1 с. Такую единицу называют 1 Гц.

Из (1.7.11) следует, что:

Следовательно, ω 0 - это число колебаний, совершаемое за 2π секунд. Величину ω 0 называют круговой или циклической частотой. Используя (1.7.12) и (1.7.13), запишем:

Дифференцируя () по времени, получим выражение для скорости шарика:

Из (1.7.15) следует, что скорость также изменяется по гармоническому закону и опережает смещение по фазе на ½π. Дифференцируя (1.7.15), получим ускорение:

1.7.2. Математический маятник

Математическим маятником называют идеализированную систему, состоящую из нерастяжимой невесомой нити, на которой подвешено тело, вся масса которого сосредоточена в одной точке.

Отклонение маятника от положения равновесия характеризуют углом φ, образованным нитью с вертикалью (Рис. 1.7.3).


Рис. 1.7.3. Математический маятник


При отклонении маятника от положения равновесия возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен ml 2:

Это уравнение можно привести к виду:

Ограничиваясь случаем малых колебаний sinφ ≈ φ и вводя обозначение:

уравнение (1.7.19) может быть представлено так:

что совпадает по форме с уравнением колебаний пружинного маятника. Следовательно, его решением будет гармоническое колебание:

Из (1.7.20) следует, что циклическая частота колебаний математического маятника зависит от его длины и ускорения свободного падения. Используя формулу для периода колебаний () и (1.7.20), получим известное соотношение:

1.7.3. Физический маятник

Физическим маятником называется твердое тело, способное совершать колебания вокруг неподвижной точки, не совпадающей с центром инерции. В положении равновесия центр инерции маятника С находится под точкой подвеса О на одной с ней вертикали (Рис. 1.7.4).


Рис. 1.7.4. Физический маятник


При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

где m - масса маятника, l - расстояние между точкой подвеса и центром инерции маятника.

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен I:

Для малых колебаний sinφ ≈ φ. Тогда, вводя обозначение:

что также совпадает по форме с уравнением колебаний пружинного маятника. Из уравнений (1.7.27) и (1.7.26) следует, что при малых отклонениях физического маятника от положения равновесия он совершает гармоническое колебание, частота которого зависит от массы маятника, момента инерции и расстояния между осью вращения и центром инерции. С помощью (1.7.26) можно вычислить период колебаний:

Сравнивая формулы (1.7.28) и () получим, что математический маятник с длиной:

будет иметь такой же период колебаний, что и рассмотренный физический маятник. Величину (1.7.29) называют приведенной длиной физического маятника. Следовательно, приведенная длина физического маятника - это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника. По теореме Штайнера момент инерции физического маятника равен:

где I 0 - момент инерции относительно центра инерции. Подставляя (1.7.30) в (1.7.29), получим:

Следовательно, приведенная длина всегда больше расстояния между точкой подвеса и центром инерции маятника, так что точка подвеса и центр качания лежат по разные стороны от центра инерции.

1.7.4. Энергия гармонических колебаний

При гармоническом колебании происходит периодическое взаимное превращение кинетической энергии колеблющегося тела Е к и потенциальной энергии Е п, обусловленной действием квазиупругой силы. Из этих энергий слагается полная энергия Е колебательной системы:

Распишем последнее выражение

Но к = mω 2 , поэтому получим выражение для полной энергии колеблющегося тела

Таким образом полная энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды и квадрату круговой частоты колебания.

1.7.5. Затухающие колебания.

При изучении гармонических колебаний не учитывались силы трения и сопротивления, которые существуют в реальных системах. Действие этих сил существенно изменяет характер движения, колебание становится затухающим .

Если в системе кроме квазиупругой силы действуют силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:

где r - коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Подставим (1.7.34б) в (1.7.34а):

График этой функции показан на рис.1.7.5 сплошной кривой 1, а штриховой линией 2 изображено изменение амплитуды:

При очень малом трении период затухающего колебания близок к периоду незатухающего свободного колебания (1.7.35.б)

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания : чем больше β, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда. На практике, степень затухания часто характеризуют логарифмическим декрементом затухания , понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд колебаний, разделенных интервалом времени, равным периоду колебаний:

;

Следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью:

При сильном затухании из формулы (1.7.37) видно, что период колебания является мнимой величиной. Движение в этом случае уже называется апериодическим . График апериодического движения в виде показан на рис. 1.7.6. Незатухающие и затухающие колебания называют собственными или свободными . Они возникают вследствие начального смещения или начальной скорости и совершаются при отсутствии внешнего воздействия за счет первоначально накопленной энергии.

1.7.6. Вынужденные колебания. Резонанс.

Вынужденными колебаниями называются такие, которые возникают в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку кроме квазиупругой силы и силы трения действует внешняя вынуждающая сила

,

где F 0 - амплитуда; ω - круговая частота колебаний вынуждающей силы. Составим дифференциальное уравнение (второй закон Ньютона):

,

Амплитуда вынужденного колебания (1.7.39) прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебания. Если ω 0 и β для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной .

Само явление - достижение максимальной амплитуды для заданных ω 0 и β - называют резонансом.

Рис. 1.7.7. Резонанс

При отсутствии сопротивления амплитуда вынужденных колебаний при резонансе бесконечно большая. При этом из ω рез =ω 0 , т.е. резонанс в системе без затухания наступает тогда, когда частота вынуждающей силы совпадает с частотой собственных колебаний. Графическая зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания показана на рис. 5.

Механический резонанс может быть как полезным, так и вредным явлением. Вредное действие резонанса связано главным образом с разрушением, которое он может вызвать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможные возникновения резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Если коэффициент затухания внутренних органов человека был бы не велик, то резонансные явления, возникшие в этих органах под воздействием внешних вибраций или звуковых волн, могли бы привести к трагическим последствиям: разрыву органов, повреждению связок и т.п. Однако такие явления при умеренных внешних воздействиях практически не наблюдаются, так как коэффициент затухания биологических систем достаточно велик. Тем не менее резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

1.7.7. Автоколебания

Существуют и такие колебательные системы, которые сами регулируют периодическое восполнение растраченной энергии и поэтому могут колебаться длительное время.

Незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, называются автоколебаниями , а сами системы - автоколебательными.

Амплитуда и частота автоколебаний зависят от свойств в самой автоколебательной системе, в отличие от вынужденных колебаний они не определяются внешними воздействиями.

Во многих случаях автоколебательные системы можно представить тремя основными элементами (рис.1.7.8): 1) собственно колебательная система; 2) источник энергии; 3) регулятор поступления энергии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 6) воздействует на регулятор, информирую регулятор о состоянии этой системы.

Классическим примером механической автоколебательной системы являются часы, в которых маятник или баланс являются колебательной системой, пружина или поднятая гиря - источником энергии, а анкер - регулятором поступления энергии от источника в колебательную систему.

Многие биологические системы (сердце, легкие и др.) являются автоколебательными. Характерный пример электромагнитной автоколебательной системы - генераторы автоколебательных колебаний.

1.7.8. Сложение колебаний одного направления

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты:

x 1 =a 1 cos(ω 0 t + α 1), x 2 =a 2 cos(ω 0 t + α 2).

Гармоническое колебание можно задать с помощью вектора, длина которого равна амплитуде колебаний, а направление образует с некоторой осью угол, равный начальной фазе колебаний. Если этот вектор вращается с угловой скоростью ω 0 , то его проекция на выбранную ось будет изменяться по гармоническому закону. Исходя из этого, выберем некоторую ось Х и представим колебания с помощью векторов а 1 и а 2 (рис.1.7.9).

Из рис.1.7.6 следует, что

.

Схемы, в которых колебания изображаются графически в виде векторов на плоскости, называются векторными диаграммами.

Из формулы 1.7.40 следует. Что если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме амплитуд складываемых колебаний. Если разность фаз складываемых колебаний равна , то амплитуда результирующего колебания равна . Если частоты складываемых колебаний не одинаковы, то векторы, соответствующие этим колебаниям будут вращаться с разной скоростью. В этом случае результирующий вектор пульсирует по величине и вращается с непостоянной скоростью. Следовательно, в результате сложения получается не гармоническое колебание, а сложный колебательный процесс.

1.7.9. Биения

Рассмотрим сложение двух гармонических колебаний одинакового направления мало отличающихся по частоте. Пусть частота одного из них равна ω , а второго ω+∆ω, причем ∆ω<<ω. Положим, что амплитуды складываемых колебаний одинаковы и начальные фазы обоих колебаний равны нулю. Тогда уравнения колебаний запишутся следующим образом:

x 1 =a cos ωt, x 2 =a cos(ω+∆ω)t.

Сложив эти выражения и используя формулу для суммы косинусов, получаем:

Колебания (1.7.41) можно рассматривать как гармоническое колебание частотой ω, амплитуда которого изменяется по закону . Эта функция является периодической с частотой в два раза превышающей частоту выражения, стоящего под знаком модуля, т.е. с частотой ∆ω. Таким образом, частота пульсаций амплитуды, называемая частотой биений, равна разности частот складываемых колебаний.

1.7.10. Сложение взаимно перпендикулярных колебаний (фигуры Лиссажу)

Если материальная точка совершает колебания как вдоль оси х, так и вдоль оси у, то она будет двигаться по некоторой криволинейной траектории. Пусть частота колебаний одинакова и начальная фаза первого колебания равна нулю, тогда уравнения колебаний запишем в виде:

Уравнение (1.7.43) представляет собой уравнение эллипса, оси которого ориентированы произвольно относительно координатных осей х и у. Ориентация эллипса и величина его полуосей зависят от амплитуд а и b и разности фаз α. Рассмотрим некоторые частные случаи:

(m=0, ±1, ±2, …). В этом случае уравнение имеет вид

Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны амплитудам (рис. 1.7.12). Если амплитуды равны, то эллипс становится окружностью.

Рис.1.7.12

Если частоты взаимно перпендикулярных колебаний отличаются на малую величину ∆ω, их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В этом случае уравнения колебаний можно записать

x=a cos ωt, y=b cos[ωt+(∆ωt+α)]

и выражение ∆ωt+α рассматривать как разность фаз, медленно изменяющуюся со временем по линейному закону. Результирующее движение в этом случае происходит по медленно изменяющейся кривой, которая будет последовательно принимать форму, отвечающую всем значениям разности фаз от -π до+π.

Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу . Пусть, например, частоты складываемых колебаний относятся как 1: 2 и разность фаз π/2. Тогда уравнения колебаний имеют вид

x=a cos ωt, y=b cos.

За то время, пока вдоль оси х точка успевает переместиться из одного крайнего положения в другое, вдоль оси у, выйдя из нулевого положения, она успевает достигнуть одного крайнего положения, затем другого и вернуться. Вид кривой показан на рис. 1.7.13. Кривая при таком же соотношении частот, но разности фаз равной нулю показана на рис.1.7.14. Отношение частот складываемых колебаний обратно отношению числа точек пересечения фигур Лиссажу с прямыми, параллельными осям координат. Следовательно, по виду фигур Лиссажу можно определить соотношение частот складываемых колебаний или неизвестную частоту. Если одна из частот известна.

Рис.1.7.13
Рис.1.7.14

Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее получающиеся фигуры Лиссажу.

1.7.11. Распространение волн в упругой среде

Если в каком-либо месте упругой (твёрдой жидкой или газообразной) среды возбудить колебания её частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью υ. процесс распространения колебаний в пространстве называется волной .

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия.

В зависимости от направлений колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волн. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновения только продольных волн. В твёрдой среде возможно возникновение как продольных, так и поперечных волн.

На рис. 1.7.12 показано движение частиц при распространении в среде поперечной волны. Номерами 1,2 и т. д. обозначены частицы отстающие друг от друга на расстояние, равное (¼ υT), т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент, времени принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения равновесия частица 2. По пришествие ещё четверти периода первая часть будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнёт смещаться вверх из положения равновесия. В момент времени равный T, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как чальный момент. Волна к моменту времени T, пройдя путь (υT), достигнет частицы 5.

На Рис. 1.7.13 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево.

Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разряжения частиц (места сгущения обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью υ.


Рис. 1.7.15

Рис. 1.7.16

На рис. 1.7.15 и 1.7.16 показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц, заключённых в некотором объёме. Распространяясь от источников колебаний, волновой процесс охватывает всё новые и новые части пространства, геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания ещё не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются не подвижными (они проходят через положения равновесия частиц, колеблющихся в одной фазе). Волновойфронт всё время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне - множество концентрических сфер.

Рис. 1.7.17

Пусть плоская волна распространяется вдоль оси x . Тогда все точки сферы, положения, равновесия которых имеет одинаковую координату x (но различие значения координат y и z), колеблются в одинаковой фазе.

На Рис. 1.7.17 изображена кривая, которая даёт смещение ξ из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функций ξ (x, t) для некоторого фиксированного момента времени t. Такой график можно строить как для продольной так и для поперечной волны.

Расстояние λ, на короткое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны . Очевидно, что

где υ - скорость волны, T- период колебаний. Длину волныможноопределить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2π (см. рис. 1.7.14)

Заменив в соотношении(1.7.45) T через 1/ν (ν - частота колебаний), получим

К этой формуле можно придти также из следующих соображений. За одну секунду источник волн совершает ν колебаний, порождая в среде при каждом колебании один "гребень" и одну "впадину" волны. К тому моменту, когда источник будет завершать ν - е колебание, первый "гребень" успеет пройти путь υ. Следовательно, ν "гребней" и "впадин" волны должны уложиться в длине υ.

1.7.12. Уравнение плоской волны

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x, y, z и времени t :

ξ = ξ (x, y, z; t)

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической относительно времени t , и относительно координат x, y, z. . Периодичность по времени вытекает из того, что точки, отстоящие друг от друга на расстоянии λ , колеблются одинаковым образом.

Найдем вид функции ξ в случае плоской волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси x и, поскольку все точки волновой поверхности колеблются одинаково, смещение ξ будет зависеть только от x и t :

ξ = ξ (x, t) .

Рис.1.7.18

Пусть колебания точек, лежащих в плоскости x = 0 (рис. 1.7.18), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению x . Для того, чтобы пройти путь от плоскости x =0 до этой плоскости, волне требуется время(υ - cкорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости x , будут отставать по времени на τ от колебаний частиц в плоскости x = 0 , т.е. будут иметь вид

Итак, уравнение плоской волны (продольной, и поперечной), распространяющейся в направлении оси x , выглядит следующим образом:

Это выражение определяет связь между временем t и тем местом x , в котором фаза имеет зафиксированное значение. Вытекающее из него значение dx/dt дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (1.7.48), получим

Уравнение волны, распространяющейся в сторону убывания x :

При выводе формулы (1.7.53) мы предполагали, что амплитуда колебаний не зависит от x . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону:

Соответственно уравнение плоской волны, с учетом затухания , имеет следующий вид:

(1.7.54)

(a 0 - амплитуда в точках плоскости x = 0).