Когда косинус равен синусу. Синус (sin x) и косинус (cos x) – свойства, графики, формулы

Синус является одной из основных тригонометрических функций, применение которой не ограничено одной лишь геометрией. Таблицы вычисления тригонометрических функций, как и инженерные калькуляторы, не всегда под рукой, а вычисление синуса порой нужно для решения различных задач. Вообще, вычисление синуса поможет закрепить чертёжные навыки и знание тригонометрических тождеств.

Игры с линейкой и карандашом

Простая задача: как найти синус угла, нарисованного на бумаге? Для решения понадобится обычная линейка, треугольник (или циркуль) и карандаш. Простейшим способом вычислить синус угла можно, разделив дальний катет треугольника с прямым углом на длинную сторону - гипотенузу. Таким образом, сначала нужно дополнить острый угол до фигуры прямоугольного треугольника, прочертив перпендикулярную одному из лучей линию на произвольном расстоянии от вершины угла. Потребуется соблюсти угол именно 90°, для чего нам и понадобится канцелярский треугольник.

Использование циркуля немного точнее, но займёт больше времени. На одном из лучей нужно отметить 2 точки на некотором расстоянии, настроить на циркуле радиус, примерно равный расстоянию между точками, и прочертить полуокружности с центрами в этих точках до получения пересечений этих линий. Соединив точки пересечения наших окружностей между собой, мы получим строгий перпендикуляр к лучу нашего угла, остаётся лишь продлить линию до пересечения с другим лучом.

В полученном треугольнике нужно линейкой измерить сторону напротив угла и длинную сторону на одном из лучей. Отношение первого измерения ко второму и будет искомой величиной синуса острого угла.

Найти синус для угла больше 90°

Для тупого угла задача не намного сложнее. Нужно прочертить луч из вершины в противоположную сторону с помощью линейки для образования прямой с одним из лучей интересующего нас угла. С полученным острым углом следует поступать как описано выше, синусы смежных углов, образующих вместе развёрнутый угол 180°, равны.

Вычисление синуса по другим тригонометрическим функциям

Также вычисление синуса возможно, если известны значения других тригонометрических функций угла или хотя бы длины сторон треугольника. В этом нам помогут тригонометрические тождества. Разберём распространённые примеры.

Как находить синус при известном косинусе угла? Первое тригонометрическое тождество, исходящее из теоремы Пифагора, гласит, что сумма квадратов синуса и косинуса одного и того же угла равна единице.

Как находить синус при известном тангенсе угла? Тангенс получают делением дальнего катета на ближний или делением синуса на косинус. Таким образом, синусом будет произведение косинуса на тангенс, а квадратом синуса будет квадрат этого произведения. Заменяем косинус в квадрате на разность между единицей и квадратным синусом согласно первому тригонометрическому тождеству и путём нехитрых манипуляций приводим уравнение к вычислению квадратного синуса через тангенс, соответственно, для вычисления синуса придётся извлечь корень из полученного результата.

Как находить синус при известном котангенсе угла? Значение котангенса можно вычислить, разделив длину ближнего от угла катета на длину дальнего, а также поделив косинус на синус, то есть котангенс - функция, обратная тангенсу относительно числа 1. Для расчёта синуса можно вычислить тангенс по формуле tg α = 1 / ctg α и воспользоваться формулой во втором варианте. Также можно вывести прямую формулу по аналогии с тангенсом, которая будет выглядеть следующим образом.

Как находить синус по трём сторонам треугольника

Существует формула для нахождения длины неизвестной стороны любого треугольника, не только прямоугольного, по двум известным сторонам с использованием тригонометрической функции косинуса противолежащего угла. Выглядит она так.

Ну, а синус можно далее рассчитать по косинусу согласно формулам выше.

Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.

\sin \alpha = \frac{a}{c}

Косинус острого угла прямоугольного треугольника

Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.

\cos \alpha = \frac{b}{c}

Тангенс острого угла прямоугольного треугольника

Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.

tg \alpha = \frac{a}{b}

Котангенс острого угла прямоугольного треугольника

Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.

ctg \alpha = \frac{b}{a}

Синус произвольного угла

Ордината точки на единичной окружности , которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha .

\sin \alpha=y

Косинус произвольного угла

Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha .

\cos \alpha=x

Тангенс произвольного угла

Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha .

tg \alpha = y_{A}

tg \alpha = \frac{\sin \alpha}{\cos \alpha}

Котангенс произвольного угла

Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha .

ctg \alpha =x_{A}

ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

Пример нахождения произвольного угла

Если \alpha — некоторый угол AOM , где M — точка единичной окружности, то

\sin \alpha=y_{M} , \cos \alpha=x_{M} , tg \alpha=\frac{y_{M}}{x_{M}} , ctg \alpha=\frac{x_{M}}{y_{M}} .

Например, если \angle AOM = -\frac{\pi}{4} , то: ордината точки M равна -\frac{\sqrt{2}}{2} , абсцисса равна \frac{\sqrt{2}}{2} и потому

\sin \left (-\frac{\pi}{4} \right)=-\frac{\sqrt{2}}{2} ;

\cos \left (\frac{\pi}{4} \right)=\frac{\sqrt{2}}{2} ;

tg ;

ctg \left (-\frac{\pi}{4} \right)=-1 .

Таблица значений синусов косинусов тангенсов котангенсов

Значения основных часто встречающихся углов приведены в таблице:

0^{\circ} (0) 30^{\circ}\left(\frac{\pi}{6}\right) 45^{\circ}\left(\frac{\pi}{4}\right) 60^{\circ}\left(\frac{\pi}{3}\right) 90^{\circ}\left(\frac{\pi}{2}\right) 180^{\circ}\left(\pi\right) 270^{\circ}\left(\frac{3\pi}{2}\right) 360^{\circ}\left(2\pi\right)
\sin\alpha 0 \frac12 \frac{\sqrt 2}{2} \frac{\sqrt 3}{2} 1 0 −1 0
\cos\alpha 1 \frac{\sqrt 3}{2} \frac{\sqrt 2}{2} \frac12 0 −1 0 1
tg \alpha 0 \frac{\sqrt 3}{3} 1 \sqrt3 0 0
ctg \alpha \sqrt3 1 \frac{\sqrt 3}{3} 0 0

Что такое синус, косинус, тангенс, котангенс угла поможет понять прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \(AC \) ); катеты – это две оставшиеся стороны \(AB \) и \(BC \) (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла \(BC \) , то катет \(AB \) – это прилежащий катет, а катет \(BC \) - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике:

\[ \sin \beta =\dfrac{BC}{AC} \]

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике:

\[ \cos \beta =\dfrac{AB}{AC} \]

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике:

\[ tg\beta =\dfrac{BC}{AB} \]

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике:

\[ ctg\beta =\dfrac{AB}{BC} \]

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла \(\beta \) . По определению, из треугольника \(ABC \) : \(\cos \beta =\dfrac{AB}{AC}=\dfrac{4}{6}=\dfrac{2}{3} \) , но ведь мы можем вычислить косинус угла \(\beta \) и из треугольника \(AHI \) : \(\cos \beta =\dfrac{AH}{AI}=\dfrac{6}{9}=\dfrac{2}{3} \) . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника \(ABC \) , изображённого ниже на рисунке, найдём \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \) .

\(\begin{array}{l}\sin \ \alpha =\dfrac{4}{5}=0,8\\\cos \ \alpha =\dfrac{3}{5}=0,6\\tg\ \alpha =\dfrac{4}{3}\\ctg\ \alpha =\dfrac{3}{4}=0,75\end{array} \)

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла \(\beta \) .

Ответы: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac{4}{3} \) .

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \(1 \) . Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \(x \) (в нашем примере, это радиус \(AB \) ).

Каждой точке окружности соответствуют два числа: координата по оси \(x \) и координата по оси \(y \) . А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник \(ACG \) . Он прямоугольный, так как \(CG \) является перпендикуляром к оси \(x \) .

Чему равен \(\cos \ \alpha \) из треугольника \(ACG \) ? Всё верно \(\cos \ \alpha =\dfrac{AG}{AC} \) . Кроме того, нам ведь известно, что \(AC \) – это радиус единичной окружности, а значит, \(AC=1 \) . Подставим это значение в нашу формулу для косинуса. Вот что получается:

\(\cos \ \alpha =\dfrac{AG}{AC}=\dfrac{AG}{1}=AG \) .

А чему равен \(\sin \ \alpha \) из треугольника \(ACG \) ? Ну конечно, \(\sin \alpha =\dfrac{CG}{AC} \) ! Подставим значение радиуса \(AC \) в эту формулу и получим:

\(\sin \alpha =\dfrac{CG}{AC}=\dfrac{CG}{1}=CG \)

Так, а можешь сказать, какие координаты имеет точка \(C \) , принадлежащая окружности? Ну что, никак? А если сообразить, что \(\cos \ \alpha \) и \(\sin \alpha \) - это просто числа? Какой координате соответствует \(\cos \alpha \) ? Ну, конечно, координате \(x \) ! А какой координате соответствует \(\sin \alpha \) ? Всё верно, координате \(y \) ! Таким образом, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \) .

А чему тогда равны \(tg \alpha \) и \(ctg \alpha \) ? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \(tg \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{y}{x} \) , а \(ctg \alpha =\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{x}{y} \) .

А что, если угол будет больше ? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник \({{A}_{1}}{{C}_{1}}G \) : угол (как прилежащий к углу \(\beta \) ). Чему равно значение синуса, косинуса, тангенса и котангенса для угла \({{C}_{1}}{{A}_{1}}G=180{}^\circ -\beta \ \) ? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

\(\begin{array}{l}\sin \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{C}_{1}}G}{1}={{C}_{1}}G=y;\\\cos \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{A}_{1}}G}{1}={{A}_{1}}G=x;\\tg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}G}=\dfrac{y}{x};\\ctg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{C}_{1}}G}=\dfrac{x}{y}\end{array} \)

Ну вот, как видишь, значение синуса угла всё так же соответствует координате \(y \) ; значение косинуса угла – координате \(x \) ; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \(x \) . До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \(360{}^\circ \) или \(2\pi \) . А можно повернуть радиус-вектор на \(390{}^\circ \) или на \(-1140{}^\circ \) ? Ну конечно, можно! В первом случае, \(390{}^\circ =360{}^\circ +30{}^\circ \) , таким образом, радиус-вектор совершит один полный оборот и остановится в положении \(30{}^\circ \) или \(\dfrac{\pi }{6} \) .

Во втором случае, \(-1140{}^\circ =-360{}^\circ \cdot 3-60{}^\circ \) , то есть радиус-вектор совершит три полных оборота и остановится в положении \(-60{}^\circ \) или \(-\dfrac{\pi }{3} \) .

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \(360{}^\circ \cdot m \) или \(2\pi \cdot m \) (где \(m \) – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол \(\beta =-60{}^\circ \) . Это же изображение соответствует углу \(-420{}^\circ ,-780{}^\circ ,\ 300{}^\circ ,660{}^\circ \) и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой \(\beta +360{}^\circ \cdot m \) или \(\beta +2\pi \cdot m \) (где \(m \) – любое целое число)

\(\begin{array}{l}-420{}^\circ =-60+360\cdot (-1);\\-780{}^\circ =-60+360\cdot (-2);\\300{}^\circ =-60+360\cdot 1;\\660{}^\circ =-60+360\cdot 2.\end{array} \)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

\(\begin{array}{l}\sin \ 90{}^\circ =?\\\cos \ 90{}^\circ =?\\\text{tg}\ 90{}^\circ =?\\\text{ctg}\ 90{}^\circ =?\\\sin \ 180{}^\circ =\sin \ \pi =?\\\cos \ 180{}^\circ =\cos \ \pi =?\\\text{tg}\ 180{}^\circ =\text{tg}\ \pi =?\\\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =?\\\sin \ 270{}^\circ =?\\\cos \ 270{}^\circ =?\\\text{tg}\ 270{}^\circ =?\\\text{ctg}\ 270{}^\circ =?\\\sin \ 360{}^\circ =?\\\cos \ 360{}^\circ =?\\\text{tg}\ 360{}^\circ =?\\\text{ctg}\ 360{}^\circ =?\\\sin \ 450{}^\circ =?\\\cos \ 450{}^\circ =?\\\text{tg}\ 450{}^\circ =?\\\text{ctg}\ 450{}^\circ =?\end{array} \)

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

\(\begin{array}{l}\sin \alpha =y;\\cos\alpha =x;\\tg\alpha =\dfrac{y}{x};\\ctg\alpha =\dfrac{x}{y}.\end{array} \)

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в \(90{}^\circ =\dfrac{\pi }{2} \) соответствует точка с координатами \(\left(0;1 \right) \) , следовательно:

\(\sin 90{}^\circ =y=1 \) ;

\(\cos 90{}^\circ =x=0 \) ;

\(\text{tg}\ 90{}^\circ =\dfrac{y}{x}=\dfrac{1}{0}\Rightarrow \text{tg}\ 90{}^\circ \) - не существует;

\(\text{ctg}\ 90{}^\circ =\dfrac{x}{y}=\dfrac{0}{1}=0 \) .

Дальше, придерживаясь той же логики, выясняем, что углам в \(180{}^\circ ,\ 270{}^\circ ,\ 360{}^\circ ,\ 450{}^\circ (=360{}^\circ +90{}^\circ)\ \) соответствуют точки с координатами \(\left(-1;0 \right),\text{ }\left(0;-1 \right),\text{ }\left(1;0 \right),\text{ }\left(0;1 \right) \) , соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

\(\displaystyle \sin \ 180{}^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180{}^\circ =\cos \ \pi =-1 \)

\(\text{tg}\ 180{}^\circ =\text{tg}\ \pi =\dfrac{0}{-1}=0 \)

\(\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =\dfrac{-1}{0}\Rightarrow \text{ctg}\ \pi \) - не существует

\(\sin \ 270{}^\circ =-1 \)

\(\cos \ 270{}^\circ =0 \)

\(\text{tg}\ 270{}^\circ =\dfrac{-1}{0}\Rightarrow \text{tg}\ 270{}^\circ \) - не существует

\(\text{ctg}\ 270{}^\circ =\dfrac{0}{-1}=0 \)

\(\sin \ 360{}^\circ =0 \)

\(\cos \ 360{}^\circ =1 \)

\(\text{tg}\ 360{}^\circ =\dfrac{0}{1}=0 \)

\(\text{ctg}\ 360{}^\circ =\dfrac{1}{0}\Rightarrow \text{ctg}\ 2\pi \) - не существует

\(\sin \ 450{}^\circ =\sin \ \left(360{}^\circ +90{}^\circ \right)=\sin \ 90{}^\circ =1 \)

\(\cos \ 450{}^\circ =\cos \ \left(360{}^\circ +90{}^\circ \right)=\cos \ 90{}^\circ =0 \)

\(\text{tg}\ 450{}^\circ =\text{tg}\ \left(360{}^\circ +90{}^\circ \right)=\text{tg}\ 90{}^\circ =\dfrac{1}{0}\Rightarrow \text{tg}\ 450{}^\circ \) - не существует

\(\text{ctg}\ 450{}^\circ =\text{ctg}\left(360{}^\circ +90{}^\circ \right)=\text{ctg}\ 90{}^\circ =\dfrac{0}{1}=0 \) .

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

\(\left. \begin{array}{l}\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac{y}{x};\\ctg \alpha =\dfrac{x}{y}.\end{array} \right\}\ \text{Надо запомнить или уметь выводить!!!} \)

А вот значения тригонометрических функций углов в и \(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4} \) , приведённых ниже в таблице, необходимо запомнить:

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений:

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (\(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4},\ 60{}^\circ =\dfrac{\pi }{3} \) ), а также значение тангенса угла в \(30{}^\circ \) . Зная эти \(4 \) значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

\(\begin{array}{l}\sin 30{}^\circ =\cos \ 60{}^\circ =\dfrac{1}{2}\ \ \\\sin 45{}^\circ =\cos \ 45{}^\circ =\dfrac{\sqrt{2}}{2}\\\sin 60{}^\circ =\cos \ 30{}^\circ =\dfrac{\sqrt{3}}{2}\ \end{array} \)

\(\text{tg}\ 30{}^\circ \ =\dfrac{1}{\sqrt{3}} \) , зная это можно восстановить значения для \(\text{tg}\ 45{}^\circ , \text{tg}\ 60{}^\circ \) . Числитель «\(1 \) » будет соответствовать \(\text{tg}\ 45{}^\circ \ \) , а знаменатель «\(\sqrt{\text{3}} \) » соответствует \(\text{tg}\ 60{}^\circ \ \) . Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего \(4 \) значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота? Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки. Вот, к примеру, перед нами такая окружность:

Нам дано, что точка \(K({{x}_{0}};{{y}_{0}})=K(3;2) \) - центр окружности. Радиус окружности равен \(1,5 \) . Необходимо найти координаты точки \(P \) , полученной поворотом точки \(O \) на \(\delta \) градусов.

Как видно из рисунка, координате \(x \) точки \(P \) соответствует длина отрезка \(TP=UQ=UK+KQ \) . Длина отрезка \(UK \) соответствует координате \(x \) центра окружности, то есть равна \(3 \) . Длину отрезка \(KQ \) можно выразить, используя определение косинуса:

\(\cos \ \delta =\dfrac{KQ}{KP}=\dfrac{KQ}{r}\Rightarrow KQ=r\cdot \cos \ \delta \) .

Тогда имеем, что для точки \(P \) координата \(x={{x}_{0}}+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \) .

По той же логике находим значение координаты y для точки \(P \) . Таким образом,

\(y={{y}_{0}}+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \) .

Итак, в общем виде координаты точек определяются по формулам:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta \end{array} \) , где

\({{x}_{0}},{{y}_{0}} \) - координаты центра окружности,

\(r \) - радиус окружности,

\(\delta \) - угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end{array} \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Изначально синус и косинус возникли из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было замечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается всегда одинаковым.

Именно так и были введены понятия синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут применяться не только в прямоугольных треугольниках. Чтобы найти значение тупого или острого угла, стороны любого треугольника, достаточно применить теорему косинусов и синусов.

Теорема косинусов довольно проста: «Квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними».

Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему часто расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная - математический инструмент, показывающий, как быстро меняется функция относительно изменения ее аргумента. Производные используются , геометрии, и , ряде технических дисциплин.

При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса - синус, но со знаком «минус».

Применение в математике

Особенно часто синусы и косинусы используются при решении прямоугольных треугольников и задач, связанных с ними.

Удобство синусов и косинусов нашло свое отражение и в технике. Углы и стороны было просто оценивать по теоремам косинусов и синусов, разбивая сложные фигуры и объекты на «простые» треугольники. Инженеры и , часто имеющие дело с расчетами соотношения сторон и градусных мер, тратили немало времени и усилий для вычисления косинусов и синусов не табличных углов.

Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов разных углов. В советское время некоторые преподаватели заставляли своих подопечных страницы таблиц Брадиса наизусть.

Радиан - угловая величина дуги, по длине равной радиусу или 57,295779513° градусов.

Градус (в геометрии) - 1/360-я часть окружности или 1/90-я часть прямого угла.

π = 3.141592653589793238462… (приблизительное значение числа Пи).

Таблица косинусов для углов: 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°.

Угол х (в градусах) 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Угол х (в радианах) 0 π/6 π/4 π/3 π/2 2 x π/3 3 x π/4 5 x π/6 π 7 x π/6 5 x π/4 4 x π/3 3 x π/2 5 x π/3 7 x π/4 11 x π/6 2 x π
cos x 1 √3/2 (0,8660) √2/2 (0,7071) 1/2 (0,5) 0 -1/2 (-0,5) -√2/2 (-0,7071) -√3/2 (-0,8660) -1 -√3/2 (-0,8660) -√2/2 (-0,7071) -1/2 (-0,5) 0 1/2 (0,5) √2/2 (0,7071) √3/2 (0,8660) 1

Лекция: Синус, косинус, тангенс, котангенс произвольного угла

Синус, косинус произвольного угла


Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР , который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ . Так как окружность имеет радиус, равный единице, то ОР = R = 1 .

Если с точки Р опустить перпендикуляр на ось ОХ , то получим прямоугольный треугольник с гипотенузой, равной единице.


Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным , если же он двигается против движения часовой стрелки - положительным .


Синусом угла ОР , является ордината точки Р вектора на окружности.

То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.

Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе, получим, что

А так как R = 1 , то sin(α) = y 0 .


В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,

Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой - отрицательное.

Косинусом угла данной окружности, образованного радиусом-вектором ОР , является абсцисса точки Р вектора на окружности.

То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.


Косинус произвольного угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе, получим, что


А так как R = 1 , то cos(α) = x 0 .

В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,

Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей - отрицательное.

Тангенсом произвольного угла считается отношение синуса к косинусу.

Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.

Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.

Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.