Калькулятор онлайн.Упрощение многочлена.Умножение многочленов. Упрощение логических выражений

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

    a + b + 4

    С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

    Любая серьезная задача в математике сводится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

    Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

    Содержание урока

    Переменные

    Буквы, которые содержатся в буквенных выражениях называются переменными . Например, в выражении a+b+4 переменными являются буквы a и b . Если вместо этих переменных подставить любые числа, то буквенное выражение a+b+4 обратится в числовое выражение, значение которого можно будет найти.

    Числа, которые подставляют вместо переменных называют значениями переменных . Например, изменим значения переменных a и b . Для изменения значений используется знак равенства

    a = 2, b = 3

    Мы изменили значения переменных a и b . Переменной a присвоили значение 2 , переменной b присвоили значение 3 . В результате буквенное выражение a+b+4 обращается в обычное числовое выражение 2+3+4 значение которого можно найти:

    2 + 3 + 4 = 9

    Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a×b . Если подставить вместо переменных a и b числа 2 и 3 , то мы получим 6

    2 × 3 = 6

    Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a×(b + c) можно записать a(b + c) . Применив распределительный закон умножения, получим a(b + c)=ab+ac .

    Коэффициенты

    В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a . На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a .

    Другими словами, выражение 3a является произведением числа 3 и переменной a . Число 3 в этом произведении называют коэффициентом . Этот коэффициент показывает во сколько раз будет увеличена переменная a . Данное выражение можно прочитать как «a три раза» или «трижды а «, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a «

    К примеру, если переменная a равна 5 , то значение выражения 3a будет равно 15.

    3 × 5 = 15

    Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

    Букв может быть несколько, например 5abc . Здесь коэффициентом является число 5 . Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc «.

    Если вместо вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

    5 × 2 × 3 × 4 = 120

    Можно мысленно представить, как сначала перемножились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

    Знак коэффициента относится только к коэффициенту, и не относится к переменным.

    Рассмотрим выражение −6b . Минус, стоящий перед коэффициентом 6 , относится только к коэффициенту 6 , и не относится к переменной b . Понимание этого факта позволит не ошибаться в будущем со знаками.

    Найдем значение выражения −6b при b = 3 .

    −6b −6×b . Для наглядности запишем выражение −6b в развёрнутом виде и подставим значение переменной b

    −6b = −6 × b = −6 × 3 = −18

    Пример 2. Найти значение выражения −6b при b = −5

    Запишем выражение −6b в развёрнутом виде

    −6b = −6 × b = −6 × (−5) = 30

    Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

    −5a + b это короткая форма записи от −5 × a + b , поэтому для наглядности запишем выражение −5×a+b в развёрнутом виде и подставим значения переменных a и b

    −5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13

    Иногда буквы записаны без коэффициента, например a или ab . В этом случае коэффициентом является единица:

    но единицу по традиции не записывают, поэтому просто пишут a или ab

    Если перед буквой стоит минус, то коэффициентом является число −1 . Например, выражение −a на самом деле выглядит как −1a . Это произведение минус единицы и переменной a. Оно получилось следующим образом:

    −1 × a = −1a

    Здесь кроется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к «невидимой единице», а не к переменной a . Поэтому при решении задач следует быть внимательным.

    К примеру, если дано выражение −a и нас просят найти его значение при a = 2 , то в школе мы подставляли двойку вместо переменной a и получали ответ −2 , не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

    −a = −1 × a

    −1 × a = −1 × 2 = −2

    Если дано выражение −a и требуется найти его значение при a = −2 , то мы подставляем −2 вместо переменной a

    −a = −1 × a

    −1 × a = −1 × (−2) = 2

    Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

    Пример 4. Найти значение выражения abc при a=2 , b=3 и c=4

    Выражение abc 1×a×b×c. Для наглядности запишем выражение abc a , b и c

    1 × a × b × c = 1 × 2 × 3 × 4 = 24

    Пример 5. Найти значение выражения abc при a=−2 , b=−3 и c=−4

    Запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

    1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24

    Пример 6. Найти значение выражения abc при a=3 , b=5 и c=7

    Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

    −abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105

    Пример 7. Найти значение выражения abc при a=−2 , b=−4 и c=−3

    Запишем выражение abc в развёрнутом виде:

    −abc = −1 × a × b × c

    Подставим значение переменных a , b и c

    −abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24

    Как определить коэффициент

    Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень проста. Достаточно уметь правильно умножать числа.

    Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

    Пример 1. 7m×5a×(−3)×n

    Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть, произведения 7m и 5a записать в виде 7×m и 5×a

    7 × m × 5 × a × (−3) × n

    Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемножим числа и отдельно перемножим буквы (переменные):

    −3 × 7 × 5 × m × a × n = −105man

    Коэффициент равен −105 . После завершения буквенную часть желательно расположить в алфавитном порядке:

    −105amn

    Пример 2. Определить коэффициент в выражении: −a×(−3)×2

    −a × (−3) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

    Коэффициент равен 6.

    Пример 3. Определить коэффициент в выражении:

    Перемножим отдельно числа и буквы:

    Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

    Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен неверно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, должна быть изучена на хорошем уровне.

    Слагаемые в буквенных выражениях

    При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

    1 + 2 + 3 + 4 + 5

    Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

    1 + 2 − 3 + 4 − 5

    В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

    1 + 2 + (−3) + 4 + (−5)

    Не суть, что числа −3 и −5 теперь со знаком минуса. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

    Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице

    1 + 2 − 3 + 4 − 5 = −1

    1 + 2 + (−3) + 4 + (−5) = −1

    Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

    Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

    7a + 6b − 3c + 2d − 4s

    7a + 6b + (−3c) + 2d + (−4s)

    При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

    Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

    Например, если на доске будет записана разность a − b , то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые . А всё потому, что выражение вида a − b математик видит, как сумму a + (−b) . В таком случае выражение становится суммой, а переменные a и (−b) становятся слагаемыми.

    Подобные слагаемые

    Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть. Например, рассмотрим выражение 7a + 6b + 2a . Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a . Значит слагаемые 7a и 2a являются подобными.

    Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Эту операцию называют приведением подобных слагаемых .

    Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

    Например приведём подобные слагаемые в выражении 3a + 4a + 5a . В данном случае, подобными являются все слагаемые. Сложим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

    3a + 4a + 5a = (3 + 4 + 5)×a = 12a

    Подобные слагаемые обычно приводят в уме и результат записывают сразу:

    3a + 4a + 5a = 12a

    Также, можно рассуждать следующим образом:

    Было 3 переменные a , к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

    Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

    Пример 1. 3a + 2a + 6a + 8 a

    Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

    3a + 2a + 6a + 8a = (3 + 2 + 6 + 8) × a = 19a

    Конструкцию (3 + 2 + 6 + 8)×a можно не записывать, поэтому сразу запишем ответ

    3a + 2a + 6a + 8a = 19a

    Пример 2. Привести подобные слагаемые в выражении 2a + a

    Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1 , который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

    2a + 1a

    Теперь приведем подобные слагаемые. То есть, сложим коэффициенты и результат умножим на общую буквенную часть:

    2a + 1a = (2 + 1) × a = 3a

    Запишем решение покороче:

    2a + a = 3a

    2a+a , можно рассуждать и по-другому:

    Пример 3. Привести подобные слагаемые в выражении 2a − a

    Заменим вычитание сложением:

    2a + (−a)

    Второе слагаемое (−a) записано без коэффициента, но на самом оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

    2a + (−1a)

    Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

    2a + (−1a) = (2 + (−1)) × a = 1a = a

    Обычно записывают короче:

    2a − a = a

    Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

    Было 2 переменные a , вычли одну переменную a , в итоге осталась одна единственная переменная a

    Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

    6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

    Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

    (6 + (−3) + 4 + (−8)) × a = −1a = −a

    Запишем решение покороче:

    6a − 3a + 4a − 8a = −a

    Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b . Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

    Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a , можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b , можно подчеркнуть двумя линиями:

    Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b .

    3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

    Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

    3a + 3b + 7a + 2b = 10a + 5b

    Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

    Заменим вычитание сложение там, где это можно:

    5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

    Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержание переменные b , подчеркнем двумя линиями:

    Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть:

    5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)

    Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

    Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

    Заменим вычитание сложением там, где это можно:

    4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

    Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

    4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

    Запишем решение покороче:

    4a + 3a − 5 + 2b + 7 = 7a + 2b + 2

    Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

    Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

    Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t , можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

    5t + 5t + 2x + 3x + x

    Теперь можно привести подобные слагаемые:

    5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

    Запишем решение покороче:

    5t + 2x + 3x + 5t + x = 10t + 6x

    Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

    Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

    Заменим вычитание сложением там, где это можно:

    3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

    Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

    В итоге у нас останется выражение (−4t) + 2t . В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

    (−4t) + 2t = ((−4) + 2)×t = −2t

    Запишем решение покороче:

    Упрощение выражений

    «упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его проще и короче.

    На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

    Рассмотрим следующий пример. Упростить выражение .

    Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его проще» .

    В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

    Что ещё можно сделать? Можно вычислить полученную дробь . Тогда мы получим десятичную дробь 0,5

    В итоге дробь упростилась до 0,5.

    Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть «а что можно сделать?» . Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

    Ещё один важный момент, о котором нужно помнить, заключается в том, что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению . Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

    Но мы упростили выражение и получили новое упрощенное выражение . Значение нового упрощенного выражения по-прежнему равно 0,5

    Но выражение мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

    Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

    Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

    Рассмотрим несколько примеров.

    Пример 1. Упростить выражение 5,21s × t × 2,5

    Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

    5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

    Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st .

    Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

    Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b , затем отдельно перемножить числа и отдельно перемножить буквы:

    0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

    Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b

    Пример 3. Упростить выражение

    Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

    Теперь отдельно перемножим числа и отдельно перемножим буквы:

    Таким образом, выражение упростилось до −abc. Данное решение можно записать покороче:

    При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

    Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать , в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

    Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

    Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

    Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

    Пример 4. Упростить выражение

    Таким образом, выражение упростилось до

    Пример 5. Упростить выражение

    Перемножим отдельно числа и отдельно буквы:

    Таким образом, выражение упростилось до mn .

    Пример 6. Упростить выражение

    Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

    Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число можно перевести в обыкновенные дроби:

    Таким образом, выражение упростилось до

    Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

    Пример 7. Упростить выражение

    Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

    Таким образом, выражение упростилось до abcd . Если пропустить подробности, то данное решение можно записать значительно короче:

    Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

    Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

    Например, если требуется упростить выражение 5a + 4b , то нельзя записывать следующим образом:

    Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

    При подстановке любых значений переменных a и b выражение 5a +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

    a = 2 , b = 3

    Тогда значение выражения будет равно 22

    5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

    Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

    5a + 4b = 5 × 4 × a × b = 20ab

    20ab = 20 × 2 × 3 = 120

    Получается совсем другое значение выражения. В первом случае получилось 22 , во втором случае 120 . Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

    После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

    С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

    Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

    Пример 8. Упростить выражение 0,3a−0,4a+a

    0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

    или покороче: 0,3a − 0,4a + a = 0,9a

    Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a

    Пример 9. Упростить выражение −7,5a − 2,5b + 4a

    Чтобы упростить данное выражение можно привести подобные слагаемые:

    −7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

    или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

    Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.

    Пример 10. Упростить выражение

    Чтобы упростить данное выражение можно привести подобные слагаемые:

    Коэффициент был для удобства вычисления.

    Таким образом, выражение упростилось до

    Пример 11. Упростить выражение

    Чтобы упростить данное выражение можно привести подобные слагаемые:

    Таким образом, выражение упростилось до .

    В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело оно будет следующим образом:

    Пример 12. Упростить выражение

    Чтобы упростить данное выражение можно привести подобные слагаемые:

    Таким образом, выражение упростилось до.

    Слагаемое осталось без изменения, поскольку его не с чем было складывать.

    Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

    В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

    Ещё одно различие заключается в том, что в подробном решении ответ выглядит как , а в коротком как . На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.

    Тождества. Тождественно равные выражения

    После того, как мы упростили любое выражение, оно становится проще и короче. Чтобы проверить, верно ли упрощено выражение, достаточно подставить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то выражение упрощено верно.

    Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b . Чтобы упростить данное выражение, можно по отдельности перемножить числа и буквы:

    2a × 7b = 2 × 7 × a × b = 14ab

    Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

    Пусть значения переменных a , b будут следующими:

    a = 4 , b = 5

    Подставим их в первое выражение 2a × 7b

    Теперь подставим те же значения переменных в выражение, которое получилось в результате упрощения 2a×7b , а именно в выражение 14ab

    14ab = 14 × 4 × 5 = 280

    Видим, что при a=4 и b=5 значение первого выражения 2a×7b и значение второго выражения 14ab равны

    2a × 7b = 2 × 4 × 7 × 5 = 280

    14ab = 14 × 4 × 5 = 280

    То же самое произойдет и для любых других значений. Например, пусть a=1 и b=2

    2a × 7b = 2 × 1 × 7 × 2 =28

    14ab = 14 × 1 × 2 =28

    Таким образом, при любых значениях переменных выражения 2a×7b и 14ab равны одному и тому же значению. Такие выражения называют тождественно равными .

    Делаем вывод, что между выражениями 2a×7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению.

    2a × 7b = 14ab

    Равенством называют любое выражение, которые соединено знаком равенства (=).

    А равенство вида 2a×7b = 14ab называют тождеством .

    Тождеством называют равенство, которое верно при любых значениях переменных.

    Другие примеры тождеств:

    a + b = b + a

    a(b+c) = ab + ac

    a(bc) = (ab)c

    Да, законы математики, которые мы изучали, являются тождествами.

    Верные числовые равенства также являются тождествами. Например:

    2 + 2 = 4

    3 + 3 = 5 + 1

    10 = 7 + 2 + 1

    Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения .

    Например, мы упростили выражение 2a × 7b , и получили более простое выражение 14ab . Это упрощение можно называть тождественным преобразованием.

    Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

    Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

    Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

    0,5 × 5 × a × b = 2,5ab

    2,5ab = 2,5ab

    В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

    Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

    Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

    Задания для самостоятельного решения:

    Понравился урок?
    Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

    Зачастую в задачах требуется привести упрощенный ответ. Хотя и упрощенный, и неупрощенный ответы являются верными, преподаватель может снизить вашу оценку, если вы не упростите ответ. Более того, с упрощенным математическим выражением гораздо легче работать. Поэтому очень важно научиться упрощать выражения.

    Шаги

    Правильный порядок выполнения математических операций

    1. Запомните правильный порядок выполнения математических операций. При упрощении математического выражения необходимо соблюдать определенный порядок действий, так как некоторые математические операции имеют приоритет над другими и должны быть сделаны в первую очередь (на самом деле несоблюдение правильного порядка выполнения операций приведет вас к неправильному результату). Запомните следующий порядок выполнения математических операций: выражение в скобках, возведение в степень, умножение, деление, сложение, вычитание.

      • Обратите внимание, что знание правильного порядка выполнения операций позволит вам упростить большинство простейших выражений, но для упрощения многочлена (выражения с переменной) необходимо знать специальные приемы (смотрите следующий раздел).
    2. Начните с решения выражения в скобках. В математике скобки указывают на то, что заключенное в них выражение должно быть выполнено в первую очередь. Поэтому при упрощении любого математического выражения начинайте с решения выражения, заключенного в скобки (при этом неважно, какие операции нужно выполнить внутри скобок). Но помните, что работая с выражением, заключенным в скобки, следует соблюдать порядок проведения операций, то есть члены в скобках сначала перемножаются, делятся, складываются, вычитаются и так далее.

      • Например, упростим выражение 2x + 4(5 + 2) + 3 2 - (3 + 4/2) . Здесь начнем с выражений в скобках: 5 + 2 = 7 и 3 + 4/2 = 3 + 2 =5.
        • Выражение во второй паре скобок упрощается до 5, потому что сначала нужно разделить 4/2 (согласно правильному порядку выполнения операций). Если не соблюдать этот порядок, то вы получите неправильный ответ: 3 + 4 = 7 и 7 ÷ 2 = 7/2.
      • Если в скобках есть еще одна пара скобок, начните упрощение с решения выражения во внутренних скобках, а затем переходите к решению выражения во внешних скобках.
    3. Возведите в степень. Решив выражения в скобках, перейдите к возведению в степень (помните, что у степени есть показатель степени и основание степени). Возведите соответствующее выражение (или число) в степень и подставьте результат в данное вам выражение.

      • В нашем примере единственным выражением (числом) в степени является 3 2: 3 2 = 9. В данном вам выражении вместо 3 2 подставьте 9 и вы получите: 2x + 4(7) + 9 - 5.
    4. Умножьте. Помните, что операция умножения может обозначаться следующими символами: «х», «∙» или «*». Но если между числом и переменной (например, 2х) или между числом и числом в скобках (например, 4(7)) нет никаких символов, то это также является операцией умножения.

      • В нашем примере присутствуют две операции умножения: 2x (два умножить на переменную «х») и 4(7) (четыре умножить на семь). Мы не знаем значения х, поэтому выражение 2х оставим как есть. 4(7) = 4 х 7 = 28. Теперь вы можете переписать данное вам выражение так: 2x + 28 + 9 - 5.
    5. Разделите. Помните, что операция деления может обозначаться следующими символами: «/», «÷» или «–» (последний символ вы можете встретить в дробях). Например 3/4 – это три, деленное на четыре.

      • В нашем примере операции деления больше нет, так как вы уже разделили 4 на 2 (4/2) при решении выражения в скобках. Поэтому вы можете перейти к следующему шагу. Помните, что в большинстве выражений нет сразу всех математических операций (только некоторые из них).
    6. Сложите. При сложении членов выражения вы можете начать с самого крайнего (слева) члена, или можете сначала сложить те члены выражения, которые легко складываются. Например, в выражении 49 + 29 + 51 +71 сначала легче сложить 49 + 51 = 100, потом 29 + 71 = 100 и, наконец, 100 + 100 = 200. Гораздо сложнее складывать так: 49 + 29 = 78; 78 + 51 = 129; 129 + 71 = 200.

      • В нашем примере 2x + 28 + 9 + 5 присутствуют две операции сложения. Начнем с самого крайнего (слева) члена: 2x + 28; вы не можете сложить 2х и 28, потому что не знаете значения переменной «х». Поэтому сложите 28 + 9 = 37. Теперь выражение можно переписать так: 2х + 37 - 5.
    7. Вычтите. Это последняя операция в правильном порядке выполнения математических операций. На этом этапе вы также можете прибавлять отрицательные числа или же делать это на этапе сложения членов – это никак не отразится на конечном результате.

      • В нашем примере 2х + 37 - 5 присутствует только одна операция вычитания: 37 - 5 = 32.
    8. На этом этапе, проделав все математические операции, вы должны получить упрощенное выражение. Но если данное вам выражение содержит одну или несколько переменных, то помните, что член с переменной останется таким, как есть. Решение (а не упрощение) выражения с переменной подразумевает нахождение значения этой переменной. Иногда выражения с переменной можно упростить, используя специальные методы (смотрите следующий раздел).

      • В нашем примере окончательный ответ: 2х + 32. Вы не сможете сложить два члена, пока не узнаете значение переменной «х». Узнав значение переменной, вы с легкостью упростите этот двучлен.

      Упрощение сложных выражений

      1. Сложение подобных членов. Помните, что вычитать и складывать можно исключительно подобные члены, то есть члены с одинаковой переменной и одинаковым показателем степени. Например, можно сложить 7x и 5x, но нельзя складывать 7x и 5x 2 (так как здесь показатели степени разные).

        • Это правило распространяется и на члены с несколькими переменными. Например, можно сложить 2xy 2 и -3xy 2 , но нельзя складывать 2xy 2 и -3x 2 y или 2xy 2 и -3y 2 .
        • Рассмотрим пример: x 2 + 3x + 6 - 8x. Здесь подобными членами являются 3x и 8x, поэтому их можно сложить. Упрощенное выражение выглядит так: x 2 - 5x + 6.
      2. Упростите числовую дробь. В такой дроби и в числителе, и в знаменателе находятся числа (без переменной). Числовая дробь упрощается несколькими способами. Во-первых, просто разделите знаменатель на числитель. Во-вторых, разложите числитель и знаменатель на множители и сократите одинаковые множители (так как при делении числа на само себя вы получите 1). Другими словами, если и у числителя, и у знаменателя есть один и тот же множитель, его можно отбросить и получить упрощенную дробь.

        • Например, рассмотрим дробь 36/60. При помощи калькулятора разделите 36 на 60 и получите 0,6. Но вы можете упростить эту дробь и по-другому, разложив числитель и знаменатель на множители: 36/60 = (6х6)/(6х10) = (6/6)*(6/10). Так как 6/6 = 1, то упрощенная дробь: 1 х 6/10 = 6/10. Но эту дробь также можно упростить: 6/10 = (2х3)/(2*5) = (2/2)*(3/5) = 3/5.
      3. Если дробь содержит переменную, можно сократить одинаковые множители с переменной. Разложите и числитель, и знаменатель на множители и сократите одинаковые множители, даже если они содержат переменную (помните, что здесь одинаковые множители могут содержать или не содержать переменную).

        • Рассмотрим пример: (3x 2 + 3x)/(-3x 2 + 15x). Это выражение можно переписать (разложить на множители) в виде: (x + 1)(3x)/(3x)(5 - x). Так как член 3x находится и в числителе, и в знаменателе, его можно сократить, и вы получите упрощенное выражение: (х + 1)/(5 - х). Рассмотрим другой пример: (2x 2 + 4x + 6)/2 = (2(x 2 + 2x + 3))/2 = x 2 + 2x + 3.
        • Обратите внимание, что вы не можете сокращать любые члены – сокращаются только одинаковые множители, которые присутствуют как в числителе, так и в знаменателе. Например, в выражении (х(х + 2))/х переменная (множитель) «х» находится и в числителе, и в знаменателе, поэтому «х» можно сократить и получить упрощенное выражение: (х + 2)/1 = х + 2. Тем не менее, в выражении (х + 2)/х переменную «х» сокращать нельзя (так как в числителе «х» не является множителем).
      4. Раскройте скобки. Для этого умножьте член, стоящий за скобкой, на каждый член в скобках. Иногда это помогает упростить сложное выражение. Это относится как к членам, которые являются простыми числами, так и к членам, которые содержат переменную.

        • Например, 3(x 2 + 8) = 3x 2 + 24, а 3x(x 2 + 8) = 3x 3 + 24x.
        • Обратите внимание, что в дробных выражениях скобки раскрывать не нужно, если и в числителе, и в знаменателе присутствует одинаковый множитель. Например, в выражении (3(x 2 + 8))/3x скобки раскрывать не нужно, так как здесь можно сократить множитель 3 и получить упрощенное выражение (x 2 + 8)/x. С этим выражением легче работать; если бы вы раскрыли скобки, то получили бы следующее сложное выражение: (3x 3 + 24x)/3x.
      5. Разложите на множители многочлены. При помощи этого метода можно упростить некоторые выражения и многочлены. Разложение на множители – это операция, противоположная раскрытию скобок, то есть выражение записывается в виде произведения двух выражений, каждое из которых заключено в скобки. В некоторых случаях разложение на множители позволяет сократить одинаковое выражение. В особых случаях (как правило, с квадратными уравнениями) разложение на множители позволит вам решить уравнение.

        • Рассмотрим выражение x 2 - 5x + 6. Оно раскладывается на множители: (x - 3)(x - 2). Таким образом, если, например, дано выражение (x 2 - 5x + 6)/(2(x - 2)), то вы можете переписать его в виде (x - 3)(x - 2)/(2(x - 2)), сократить выражение (х - 2) и получить упрощенное выражение (х - 3)/2.
        • Разложение многочленов на множители применяется для решения (нахождения корней) уравнений (уравнение – это многочлен, приравненный к 0). Например, рассмотрим уравнение x 2 - 5x + 6 = 0. Разложив его на множители, вы получите (х - 3)(х - 2) = 0. Так как любое выражение, умноженное на 0, равно 0, то мы можем записать так: х - 3 = 0 и х - 2 = 0. Таким образом, х = 3 и х = 2, то есть вы нашли два корня данного вам уравнения.

    Известно, что в математике никак не обойтись без упрощения выражений. Это необходимо для правильного и быстрого решения самых разнообразных задач, а также различного рода уравнений. Обсуждаемое упрощение подразумевает под собой уменьшение количества действий, необходимых для достижения поставленной цели. В результате вычисления заметным образом облегчаются, а время существенно экономится. Но, как упростить выражение? Для этого используются установленные математические соотношения, часто именуемые формулами, либо же законами, которые позволяют делать выражения гораздо короче, упрощая тем самым расчеты.

    Не секрет, что состоянием на сегодняшний день не представляет труда упростить выражение онлайн. Приведем ссылки на некоторые наиболее популярные из них:

    Однако обойтись так можно далеко не с каждым выражением. Поэтому рассмотрим подробнее более традиционные методы.

    Вынесение общего делителя

    В том случае, когда в одном выражении присутствуют одночлены, обладающие одинаковыми множителями, можно находить при них сумму коэффициентов, а потом умножать на общий для них множитель. Эта операция также носит название "вынесения общего делителя". Последовательно используя данный метод, порою можно достаточно существенно упростить выражение. Алгебра ведь вообще, в целом, построена на группировке и перегруппировке множителей и делителей.

    Простейшие формулы сокращенного умножения

    Одним из следствий ранее описанного метода являются формулы сокращенного умножения. Как упрощать выражения с их помощью гораздо понятнее тем, кто даже не вызубрил эти формулы наизусть, а знает, которым образом они выводятся, то есть, откуда берутся, а соответственно их математическую природу. В принципе, предыдущее высказывание сохраняет свою силу во всей современной математике, начиная от первого класса и заканчивая высшими курсами механико-математических факультетов. Разность квадратов, квадрат разности и суммы, сумма и разность кубов – все эти формулы повсеместно используются в элементарной, а также высшей математике в тех случаях, когда для решения поставленных задач необходимо упростить выражение. Примеры таких преобразований можно без труда найти в любом школьном учебнике по алгебре, либо же, что еще проще, на просторах всемирной сети.

    Степени корни

    Элементарная математика, если посмотреть на нее в целом, вооружена не так уж и многими способами, при помощи которых можно упростить выражение. Степени и действия с ними, как правило, удаются большинству учащихся сравнительно легко. Только вот у многих современных школьников и студентов возникают немалые трудности, когда необходимо упростить выражение с корнями. И это совершенно безосновательно. Потому как математическая природа корней ничем не отличается от природы тех же степеней, с которыми, как правило, трудностей гораздо меньше. Известно, что квадратный корень от числа, переменной или выражения представляет собой ничто иное как то же число, переменную или выражение в степени "одна вторая", кубический корень – то же самое в степени "одна третья" и так далее по соответствию.

    Упрощения выражений с дробями

    Рассмотрим также часто встречающийся пример того, как упростить выражение с дробями. В тех случаях, когда выражения представляют собой натуральные дроби, следует выделять из знаменателя и числителя общий множитель, а затем сокращать дробь на него. Когда же одночлены обладают одинаковыми множителями, возведенными в степени, необходимо следить при их суммировании за равенством степеней.

    Упрощение простейших тригонометрических выражений

    Некоторым особняком стоит разговор о том, как упростить тригонометрическое выражение. Широчайший раздел тригонометрии является, пожалуй, первым этапом, на котором изучающим математику предстоит столкнуться с несколько абстрактными понятиями, задачами и методами их решения. Здесь существуют свои соответствующие формулы, первой из которых является основное тригонометрическое тождество. Имея достаточный математический склад ума, можно проследить планомерное выведение из этого тождества всех основных тригонометрических тождеств и формул, среди которых формулы разности и суммы аргументов, двойных, тройных аргументов, формулы приведения и многие другие. Разумеется, что забывать здесь не стоит и самые первые методы, наподобие вынесения общего множителя, которые в полной мере используются наряду с новыми способами и формулами.

    Для подведения итогов, предоставим читателю несколько советов общего характера:

    • Многочлены следует раскладывать на множители, то есть представлять их в форме произведения некоторого количества сомножителей – одночленов и многочленов. Если существует такая возможность, необходимо выносить за скобки общий множитель.
    • Лучше все-таки выучить на память все без исключения формулы сокращенного умножения. Их не так уж и много, но именно они при этом являются основой при упрощении математических выражений. Не стоит также забывать о способе выделения полных квадратов в трехчленах, являющемся обратным действием к одной из формул сокращенного умножения.
    • Все существующие в выражении дроби следует сокращать как можно чаще. При этом не забывайте, что сокращаются только множители. В том случае, когда знаменатель и числитель алгебраических дробей умножается на одно и то же самое число, которое отличается от нуля, значения дробей не меняются.
    • В целом все выражения можно преобразовывать по действиям, либо ж цепочкой. Первый способ более предпочтителен, т.к. результаты промежуточных действий проверяются легче.
    • Достаточно часто в математических выражениях приходиться извлекать корни. Следует помнить, что корни четных степеней могут извлекаться только лишь из неотрицательного числа или выражения, а корни нечетных степеней совершенно из любых выражений или чисел.

    Надеемся, наша статья поможет Вам, в дальнейнем, разбираться в математических формулах и научит применять их на практике.